Search or add a thesis

Advanced Search (Beta)
Home > Pakistans National Security Problems

Pakistans National Security Problems

Thesis Info

Author

Farida Jabin

Department

Deptt. of Defence and Strategic Studies, QAU.

Program

MSc

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1982

Thesis Completion Status

Completed

Page

210

Subject

Defence & Strategic Studies

Language

English

Other

Call No: DISS/M.Sc DSS/274

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676715933100

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ادب میں دلچسپی

ادب میں دلچسپی

                ناطق کو بچپن ہی سے ادب میں گہری دلچسپی تھی بتاتے ہیں کہ وہ میٹرک تک نصاب کی کتا بیں نہیں پڑھا کرتے تھے بلکہ دوسری کتابو ں کو پڑھنے اور گھر کے پاس سکول کی لائبریری جانے میں زیادہ دلچسپی تھی اور بقول ان کے انھوں نے بچپن میں ہی ایسی کتا بیں پڑھ رکھی تھیں جن میں کسی کوکم ہی گہری دلچسپی ہو سکتی ہے مثلاً ’’داستان امیر حمزہ‘‘’’الف لیلا‘‘ یہ کتابیں وہ بچپن میں ہی پڑھ چکے تھے اور ان میں سے بہت سے صفحات ان کو زبانی یاد بھی تھے ایک دلچسپ واقعہ جس کاذکر کرتے ہوئے وہ کہتے ہیں :

’’آب حیات کتاب جب میں نے پڑھی تو وہ مجھے ایسے ماحول اور کلچر میں لے گئی کہ وہ کتاب میں نے تقریباًچالیس دفعہ پڑھی ہوگی جب بھی پڑھتا ہوں تو ایک نیا لطف آتا ہے۔میں نے سوچا کہ شاعر ایسے ہوتے ہیں یہ تو بہت اچھے لوگ ہیں اور ان کی حرکتیں  بھی مجھے راس آئیں اس میں جتنے شاعر تھے میرے لیے خاص طور پر ان دنوں وہاں مجھے انشاء جی بہت بھائے جس طرح مولوی آزاد صاحب نے مصحفی ساتھ ان کی مبالغہ آرائی کروائی ہے۔بچپن میں ایک بندے کو ہیرو کی طرح سمجھ لیا جاتا ہے میرے لیے مصحفی ان دنوں ولن تھا مولوی آزاد نے ان کو ولن بنا کررکھ دیا تھا۔اب ہوش آیا توپتا چلا مولوی آزاد کیسے کھیل کھیلتے تھے۔(2)

                کتابوں سے دلچسپی ان کی نہ صرف ادب سے راہیں ہموار کرتی گئی بلکہ ادبی دنیا میں ممتاز لکھاری کے طور پر پہچان کا باعث بنی۔

An Extended Model Predictive-Sliding Mode Control for Three-Level AC/DC Power Converters

Abstract- In the proposed approach, an Extended Model Predictive Sliding Mode Controller (EMPSMC) was designed to control three-level AC / DC power converters for better dynamic performance and better achievement. The traditional proportional integration (PI) controller is used in the model predictive PI controller (MPPIC) technique to generate active power reference. However, this technique results in a significant overshoot/undershirt and steady-state error. Instead of PI, sliding mode control (SMC) is used to address these shortcomings. The performance of EMPSMC and MPPIC is compared and analyzed without interruption. The results show that the introduction of SMC reduces the time lag of the system and reduces overshoot. The simulation results validate the performance of the designed model.

Function Optimization and Clustering Using Computational Intelligence Techniques

Function optimization (constrained and unconstrained) is a process of finding the optimal point for the given problem. As the research is being carried out and new problem areas are being investigated, global optimization problems are getting more and more complex. The research presented in this dissertation is about to build a new accelerated function optimization technique based on evolutionary algorithm (EA). EAs have low convergence rate due to their evolutionary nature. The acceleration of evolutionary algorithm in the function optimization is achieved by incorporating gene excitation. In General, the distribution of the initial population into the search space effects the evolutionary algorithm performance. Concept of opposition based populations is employed to distribute the chromosomes more effectively. Image Segmentation is a significant and successful way for many real world applications like segmenting lung from CT scanned images. Segmentation is the process of finding optimal segments within an image. The main objective of this thesis is to make a new entirely automatic system that segments the lungs from the CT scanned images. To achieve this objective, a completely automatic un-supervised scheme is developed to segment lungs. The methodology utilizes a fuzzy histogram based image filtering technique to remove the noise, which preserves the image details for low as well as highly corrupted images. Peaks and Valley are found in bimodal group of images using Genetic Algorithm (GA). GAs are used for function optimization process and hence determining the global optimal solutions. The optimal and dynamic grey level is find out by using GA. Finding optimal clustering within a dataset is an important data mining task. Clustering and segmentations are somewhat related optimization problems of finding optimal grouping in the provided set of points. Clustering of datasets has been achieved by using an entirely automatic un-supervised approach. The employed technique optimizes multi- objective as compared to optimize single objective for clustering. Relative cloning is performed to adopt the individuals according to their fitness, which improves the algorithm performance.