Search or add a thesis

Advanced Search (Beta)
Home > A Randomized Response Approach

A Randomized Response Approach

Thesis Info

Author

Fatima Batool

Department

Department of Statistics, QAU

Program

MSc

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2011

Thesis Completion Status

Completed

Page

xxx, 188

Subject

Statistics

Language

English

Other

Call No: DISS/M.Sc. STAT/128

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676715982510

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

آنکھوں میں جو رقصاں ہوئے آثارِ مدینہ

آنکھوں میں جو رقصاں ہوئے آثارِ مدینہ
ہر سمت برسنے لگے انوارِ مدینہ

اب تک ہیں بدستور دل و جان معطر
سانسوں میں گھلی تھی کبھی مہکارِ مدینہ

دل ہے کہ دھڑکتا ہے بہت نامِ نبی ؐ پر
آنکھوں میں نمی لاتا ہے تذکارِ مدینہ

اپنے ہوں پرائے ہوں بٹے فیض برابر
تاریخ کو معلوم ہے معیارِ مدینہ

جو ابنِ اُبی کے ہیں مقلد کبھی اُن پر
کھلنے ہی نہیں پاتے ہیں اسرارِ مدینہ

تعمیر کیا ایک نیا عالمِ اقدار
معمارِ جہاں اصل ہیں معمارِ مدینہ

رحمت کا حصار ایک بناتی ہے مکمل
عالم کو لیے باہوں میں پرکارِ مدینہ

Penerapan Keterampilan Proses Dasar Berbasis Lingkungan Untuk Meningkatkan Hasil Belajar Siswa

Tujuan penelitian Perbaikan Pembelajaran ini untuk meningkatkan aktivitas dan hasil belajar Pembelajaran matematika dengan penerapan pendekatan keterampilan proses dasar berbasis lingkungan kelas VI SDN 156/III Tangil   Kabupaten Kerinci. Subjek penelitian ini adalah siswa kelas VI SDN 156/III Tangil   Kabupaten Kerinci berjumlah 16 orang Siswa. Prosedur penelitian tindakan kelas yang dilakukan oleh peneliti berdasarkan model PTK yaitu kemmis dan Mc Taggart yang terdiri dari kegiatan perencanaan, pelaksanaan, observasi dan evaluasi. Penelitian ini dilaksanakan sebanyak 2 siklus dengan masing-masing siklus sebanyak 2 pertemuan. Pada siklus I aktivitas siswa diperoleh dengan rata-rata secara klasikal 62, 93% yang termasuk dalam kualifikasi Baik. Pada siklus 2 aktivitas siswa mengalami peningkatan dengan rata-rata persentase aktivitas siswa 71, 16% dengan kualifikasi baik. Artinya terdapat peningkatan 6, 23%. Hasil belajar siswa pada siklus 1 dengan rata-rata yang diperoleh 60, 00 dengan kualifikasi cukup baik dan meningkat pada siklus 2 dengan rata-rata yang diperoleh 81, 94 dengan kualifikasi Baik. Artinya terdapat peningkatan sebanyak 21, 94. Berdasarkan hasil penelitian dapat disimpulkan bahwa penerapan pendekatan keterampilan proses dasar berbasis lingkungan dapat meningkatkan aktivitas dan hasil belajar pembelajaran matematika kelas VI SDN 156/III Tangil Kabupaten Kerinci.

Undergraduate Students Performance Using Educational Data Mining

The tremendous growth in electronic data of universities creates the need to have some meaningful information extracted from these large volumes of data. The advancement in data mining field makes it possible to mine educational data for improving the quality of the educational processes. This dissertation, thus, uses data mining methods to study the performance of undergraduate students. Two aspects of students’ performance have been focused on. Firstly, predicting students’ academic achievement at the end of a 4-year study programme, and secondly, studying typical progressions and combining them with prediction results. Predicting performance of students at the end of a university degree at an early stage of the degree program would help universities not only to focus more on bright students but also to initially identify students with low academic achievement and find ways to support them. The data of four academic cohorts of three faculties at NED University of Engineering & Technology, comprising 347 undergraduate students of Computer Science and Information Technology, 587 undergraduate students of Civil Engineering and 430 undergraduate students of Electronic Engineering, have been mined with different classifier models. The results show that it is possible to predict the graduation performance in final year at university using only pre-university marks and marks of first and second year courses, no socio-economic or demographic features, with a reasonable accuracy. Using only marks for students’ performance prediction and no other socio-demographic features will enable university administration to develop an educational policy that is easier to implement. This is the reason to investigate whether acceptable results can be obtained with marks only. Further, data of one cohort of students are used to predict students’ performance of the following cohort to test the generalizability and therefore the actionability of our approach. Moreover, using these classifiers, we explore how to derive courses that can serve as effective indicators for students’ performance at an early stage of the degree program for timely intervention. Indeed, once such courses are put in evidence, performance of students at the end of a course could be predicted and would allow for intervention while the indicator courses are actually taking place. A pragmatic policy is proposed to derive those indicators based on decision trees, a kind of classifiers that is explained in Chapter 2, Section 2.1.3.1. As the obtained decision trees have a lower accuracy than two other classifiers, though it is still acceptable, the goodness of the pragmatic policy needs to be further investigated. Therefore, we investigate how academic performance of students evolves over the four-year degree as a kind of triangulation. For this purpose, students of two consecutive cohorts of Computer Science and Information Technology have been clustered each year taking their final examination marks in individual courses in each of the four years. Xmeans and K-means clustering taking Euclidean distance for both algorithms have been applied. We put in evidence interesting typical progressions in particular students who have low marks all the way through their studies and students with high marks throughout their studies. The key contribution of our work is to understand the benefits of the pragmatic policy that is proposed earlier in this work. It turns that our pragmatic policy uncovers (almost) all the targeted students: students with low marks and students with high marks. Therefore, its implementation can be recommended.