مسجد سلطان حسن اور رفاعی مسجد
قلعے کے دائیں طرف سلطان حسن اور بائیں جانب رفاعی مسجد کی بلند و بالا عمارات دامنِ دل کھینچتی ہیں ۔ان دونوں مساجد کے درمیان ایک کشادہ شاہرہ ہے جوان مساجد کے آخر میں ایک وسیع و عریض باغیچے میں اختتام پذیر ہوتی ہے ۔راستے کے دو نوں جانب دو فٹ چوڑی اور اتنی ہی اونچی دیوار ہے جس نے راستے کی حنا بندی کی ہوئی ہے ۔دکتورہ بسنت نے اپنے پرس سے ایک چادر نکالی اور اس دیوار پر بچھا دی ۔اس کے بعد انھوں نے ڈبل روٹی ، کھیرے ،پنیر اور جیم کی ایک ڈلی چادر کے اوپر چن دی ۔پرس کے اندرونی جیب سے چھری نکالی ڈبل روٹی کو درمیان سے کاٹا اس کے اندر کھیرے اور پنیر کو جیم لگا کر رکھ دیا اور ہمارے سامنے پیش کر دیا ۔دکتورہ بسنت کی اس پرخلوص دعوتِ شیراز پر کون نہ مرتا۔
مصری عورت فرعون کے زمانے سے تاحال بااختیار ہے ۔امورِخانہ داری سے امورِ حکمرانی تک یہ باہمت عورت پدر سری معاشرے میں بھی اپنے حقوق اور فرائض سے لطف اندوز ہوتی رہی ہے ۔دعوتِ شیراز کے بعد ہم الرفاعی مسجد کی طرف روانہ ہوئے تو ایک خاتون اور دو مرد ہماری طرف آئے اور مجھ سے پوچھا کہ آپ ہندوستان سے آئے ہیں ۔میں چونکہ شلوار قمیض میں تھا اس لیے ان کو میرے مصری نہ ہونے پر یقین ہو گیا۔میں نے کہا میں پاکستان سے ہوں ۔انھوں نے مجھے چالیس جنین کی ٹکٹ پکڑا دی تو میرے میزبانوںکو مصری محکمہ سیاحت والوںکی یہ حرکت بری لگی ۔احمد نے ان سے یہ کہا کہ یہ مسلمان ہیں ایک مسلمان کے مسجد میں داخل ہو نے پر آپ ان سے ٹکٹ لیں گے ؟انھوں نے کہا یہاں لوگ نماز توپڑھتے نہیں تاریخ...
This study aims to describe the readiness of educators in implementing the 2013 curriculum in the 3T area in North Gorontalo District. The method used in this research is descriptive qualitative method. The subjects in this study were school principals and educators in the 3T area school. The research result shows four things; first; Academic qualifications of educators in schools in the 3Tl area have not been fully fulfilled according to Law No. 20 of 2003 concerning the National Education System Article 42 paragraph (1). Second; The Academic Competence of Educators in the 3T area is not yet fully educated with S1 academic qualifications in accordance with Article 8 of Law Number 14 of 2005. The three certificates of educators have not been fully fulfilled in accordance with the mandate of Law Number 14 of 2005 concerning Educators and Lecturers. The fourth role of educators in realizing the goals of national education principals continues to encourage educators to continue to carry out learning innovations, especially in the implementation of the 2013 curriculum as an effort to improve professionalism as a form of role in realizing the goals of national education.
Financial distress is an active research area particularly for business community of Pakistan due to economic conditions, electricity shortage and political situation. Banks are also taking keen interest in this area after the global financial crisis of year 2008. Therefore, the question that how financial distress can be predicted accurately has been widely debated by many scholars by using traditional statistical models. However, earlier research has not adequately addressed the issue of predicting financial distress. Adding to that the rate of financial distress is also getting harder to estimate by using traditional statistical models, because firms are becoming more complex and creating refined plans to hide their real financial situation. To prevent this condition latest prediction models are adopted by many countries which can give early indication of firm?s financial distress with highly accurate results. In this regard, prediction of financial distress by Neural Network Model is not much explored in Pakistan for foreseeing the financial health of firms. This paper addresses this issue and uses Neural Network Model to predict financial distress of firms in Pakistan by selecting suitable independent variables.
The sample of 22 private sector conventional banks listed at Pakistan Stock Exchange is selected. The time series financial statements of these banks are selected for 15 years (2001 to 2015).Selected sample time frame is (pre-crisis 2001-2007), (crisis 2008) and (post-crisis 2009-2015). To test first hypothesis,4 Altman''s ratios from revised Altman''s Z-Score Model are calculated from these financial statements of selected banks. This study used three layered Neural Network Model consisting of input layer, hidden layer and output layer. The 4 independent explanatory variables/ input are 4 Altman''s ratios and 1 dependent variable/output is probable financial distress. After determining the Neural Network architecture, cross-validation re-sampling procedure is used to train, validate, and test a Neural Network by using commerciallyavailable MATLAB software. The best and most appropriate Neural Networks model, constructed by combining input variables of 4 Altman''s ratios, resulted in the R value of 0.99 that shows a relatively high accuracy given the error ratio in the input variables. These results confirmed the second hypothesis. By testing third hypothesis, distressed and non distressed banks are correctly classified with reference to Altman?s ratio