Search or add a thesis

Advanced Search (Beta)
Home > Preparation and Structural Observations of Erbium Silicate Thin Films Formed by Vacuum Evaporation

Preparation and Structural Observations of Erbium Silicate Thin Films Formed by Vacuum Evaporation

Thesis Info

Author

Khaleeq Ahmad

Department

Deptt. of Physics, QAU.

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1987

Thesis Completion Status

Completed

Page

66

Subject

Physics

Language

English

Other

Call No: DISS/M.Phil PHY/33

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676716552338

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

بیوقوف شخص

بیوقوف شخص

اک دفعہ دا ذکر اے کہ کسے پنڈ وچ کسے بندے نے بہت وڈے رقبے وچ تربوز کاشت کیتے ہوئے سن۔ تربوز نوں منڈی تک لے جاون لئی اوہنے اک اونٹ وچ رکھیا ہویا سی۔ اوہ تربوز دی گڈ بھر دے تے اونٹ اوس گڈ نوں کھچ کے منڈی لے جاندا۔ اونٹ بڑا موٹا تازہ سی تے مالکاں اوس دا ناں بلو رکھیا ہویا سی۔ مالکاں نے اپنے اونٹ دی دیکھ بھال لئی اک نوکر رکھیا ہویا سی جو بہت بیوقوف سی۔ کئی وار اوہ اونٹ نوں پٹھے پانا بھل جاندا۔ کئی وار اونٹ نوں پانی پلانا تے چھاویں بنھنا بھل جاندا۔ اوس دے مالک اوس دی ایس عادت توں بہت تنگ سی۔

اک دن نوکر اونٹ نوں اکلا چھڈ کے کتے باہر کم چلا گیا۔ اونٹ تربوز دے کھیتاں اندر وڑ گیا تے تربوز کھانے تے خراب کرنے شروع کر دتے۔ اچانک اک تربوز اونٹ دے گلے وچ پھس گیا۔ جدوں مالک نے ویکھیا تاں بہت پریشان ہویا۔ فیر اوس اک چادر لئی تے اوس نوں اونٹ دی گردن دوالے لوپٹ دتا۔ ایس توں بعد اک ڈنڈا پھڑ کے اونٹ دی گردن اتے زور نال ماریا۔ جس پاروں اونٹ دے گلے وچ پھسیا تربوز ٹٹ گیا۔ اونٹ نے کجھ تربوز نگل لیا تے کجھ منہ توں باہر کڈھ دتا۔ انج اونٹ دا ساہ سوکھا ہویا۔ اوہ بیوقوف بندہ ایہہ سارا کجھ ویکھ رہیا سی۔ مالک نے اوہنوں نوکری توں جواب دے دتا تے اوہ اپنا سامان چک کے نال والے پنڈ اپڑ گیا۔

پنڈ پہنچ کے اوس نوں کئی گلہڑ دے مریض نظر آئے۔ اوس نے اپنے آپ نوں حکیم دسیا تے گلہڑ دا علاج کرن دا دسیا۔ پہلاں پنڈ والیاں اوس اتے اعتبار نہ کیتا۔ فیر کجھ دناں اوہناں نوں یقین ہو گیا کہ...

Men Working in Female-Dominated Professions: A stigma or facilitation?

Gender roles not only keep men and women in different spheres of family and social life but they also promote gender segregation in the education sector and professional life. There is a lot of research being conducted on women working in male dominated professions but there is scarcity of research regarding males working in female dominated professions. This study was conducted to explore the experiences of men working in female dominated professions. The first phase of this study collected quantitative data about the type female-dominated professions in Pakistan. Based on this data in-depth qualitative interviews were done with 5 professionals using snowball sampling: Nurse, Psychologist, Montessori teacher, Makeup artist/ Beautician, and Bus host. Thematic analysis was used to identify sub-themes presented in this study: (i) Reasons or motivation for joining nontraditional profession; (ii) Reaction of near and dear ones; (iii) Positive aspects of female dominated profession; (iv) Challenges of female dominated profession; (v) Professional journey; (vi) Being a minority in female majority; (vii) Struggle to maintain masculinity and (viii) Future aspirations. Study findings can be used to support male entry and retention in female dominated professions.

Adaptive Wavelet Thresholding for Non- Homogeneous Noise Reduction in Mr Magnetic Resonance Images

Noise suppression in MR (Magnetic Resonance) images is a critical task; conventional signal processing techniques are not always suitable as spatial resolution may lose during noise suppression process. Therefore noise suppression ought to be performed in a manner so as to preserve the actual pattern of the image. Non-homogeneous noise is one of the challenges faced in image processing. This thesis work; specifically focuses on non-homogeneous noise suppression method for MR images. Wavelet Analysis has widely been used for image processing including image de-noising, edge detection and segmentation. The existing wavelet de-noising methods are focused on homogeneous noise removal, using same threshold for entire image. If the image contains different burst of random noise, these conventional methods are not sufficient for effective noise removal. The quality of the post-processed image is further affected if these noise patterns cover hard to find malignant areas, which possibly increases the false alarm for diagnostic imaging. In order to improve the early detection of possible malignant areas, the quality of the post-processed image requires effective de-noising techniques, which can be adapted with the nature of noise burst. The fuzzy rule based wavelet thresholding method has been explored in this research for effective noise removal from an image with an array of complexities. In order to develop a robust system closer to real image with non-homogeneous noise, a complex range of noise patterns have been incorporated in MR images. The initial phase of the dissertation work involves the synthesis of non-homogeneous noise on various MR images. Real MR images without noise burst were used as a benchmark. The de- noised images are compared with their clean counterparts for measuring the effectiveness of the technique. A novel image synthesis process has been developed for analyzing the image de- noising and segmentation. Some of the images contain various sizes of malignant patterns for full scale analysis of image de-noising and fuzzy image segmentation. The main focus of the analysis is the brain image, as it requires rigorous image assessments for an effective classification and detection of patterns. The second phase of the dissertation work expounds the wavelet thresholding for various sets of images. An in-depth investigation of fuzzy rule based optimizer for adapting the wavelet threshold for effective noise suppression has been examined. In this technique, the threshold is further optimized, based on number of criterion including; the intensity, location and size of the noise burst over the malignant patterns. Therefore the present technique improves the post processing diagnostic of images containing small pattern(s) hidden under noise bursts, which otherwise goes undetected. The third phase of the dissertation work studies the impact of non-homogeneous noise on the performance of fuzzy image clustering algorithm. Various results were analyzed for clean, noisy and de-noised images. The purpose here is to segment the malignant areas of noisy brain MRI for effective tumor detection. Fuzzy rule based optimizer plays an important role for adapting the wavelet threshold for the region of interest. The fuzzy information of image contours and noise burst transformed into crisp control decision signals for adapting the threshold. In addition, it was found that the noisy image with no tumor has a false possibility of detecting benign pattern as malignant area. Other research outcome includes the detection of patterns in an image with invisible noise bursts using Multi-resolution Analysis. The result of this course of action is obtained in the diagonal detail components of multi-level decomposition. The difficulties observed in the prevailing methodology include the limited set of research studies conducted to address the issue of non-homogeneous noise in MR Images and the limited accessibility of real images. A good source of validation is the comparison of the de- noised image with that of clean image. Impact of non-homogeneous noise has been explored using directional wavelet. This analysis demonstrates how adversely, different noise patterns affect the computational performance of curvelets and ridglet. The main outcomes of this technique include the impact of non- homogeneous noise on wavelet and curvelet based de-noising methods. An important attribute of this research, is improved methodology for malignant patterns detection in noisy MR Images. This, in turn, makes possible the better development of image diagnostic tools.