محنت دا پھل
پرانے وقتاں دی گل اے کہ اک پنڈ وچ بڈھا کسان رہندا سی۔ اوس دے چار پتر سن۔ جو آپس وچ وی لڑ دے تے لوکاں نال وی۔ لوک اکثر لڑائی دی شکایت اوس بڈھے کسان کول کر دے۔ بابا اوہناں دے ایس وطیرے پاروں سخت پریشان سی۔ اوہناں دی حالت ویکھ کے اوس نوں اوہناں دی بہت فکر لگی رہندی۔ پھر اک دن اجیہا ہویا کہ اوہ سخت بیمار ہو گیا۔ ایتھوں تک کہ اوس دا بچنا مشکل ہو گیا۔ اوس نے اپنے پتراں نوں سدیا تے آکھیا کہ میں تہانوں اک راز دسن لگا آں۔ اپنے کھیتاں وچ اک بہت وڈا خزانہ دفن اے۔ تسی زمین نوں کھود کے کڈھ لئو۔ کسان دے مرن توں بعد اگلے دن ای چاراں نے کھیت نوں کھودنا شروع کر دتا۔ پہلاں تھوڑا پٹیا۔ پر اوہناں نوں خزانہ نہ ملیا۔ ایس توں بعد اوہناں کھیت نوں ہور ڈونگا پٹیا۔ خزانہ فیر وی اوہناں دے ہتھ نہ لگا۔ اوہناں نوں اپنے باپ اُتے بہت غصہ آیا۔ تھک کے اوہ گھر آ گئے۔
ساری رات آپس وچ گل کر دے رہے تے اپنے باپ نوں برا بھلا آکھدے رہے۔ سب توں وڈے نے اوہناں نوں صلاح دتی کہ کھیت دی کھدائی تاں کر لی اے۔ کیوں نہ ایس نوں پانی دے کے فصل بیجی لئی جاوے۔ دوجیاں نے اوس دی گل نال اتفاق کیتا۔ اگلے دن اوہناں کھیت نوں پانی لایا۔ ایس توں بعد بی کھلاریا تے فصل اگن دا انتظار کرن لگ پئے۔ کجھ عرصے بعد فصل اُگ آئی۔ اوہناں دیکھ بھال کیتی۔ اوہناں دی فصل بہت ودھیا ہوئی۔ جدوں فصل نوں کٹیا گیا پیداوار نوں ویچیا تاں اوہناں نوں بہت سارے پیسے ملے۔ جو کہ ایس توں پہلاں اوہناں ویکھے وی نئیں سن۔ ہن اوہ بہت خوش سن۔ ایس ویلے...
The paper is an attempt to review twenty-first century regionalism and its impact on South Asia, which includes the rising role of China and Pakistan’s pivot status as contributing factors to peace, growth, and development. This coincides with a more south-oriented world. The theory applied is NeoFunctionalism, which explains the European integration and may be used to explain the potential modern South Asian integration process with China as a pre-cursor. This will perhaps be a positive outcome of the twenty-first century regionalism. The paper dwells upon intra-regional integration, sighting Eurasian model of connectivity as an example, and how it can be a role-model for developing countries. The emphasis remains on improved relations between Pakistan and India as a pre-requisite for regionalism to take off in South Asia.
The boundary layer flow is an important phenomena in the field of fluid dynamics. The flow consists of two categories of fluids i) Newtonian ii) non-Newtonian or complex fluids. In this research the focus has been given to the study of boundary layer flow over a stretching/shrinking surface. Further, the boundary layer flow is divided into two sections related to finite and infinite domain. The finite domain of the boundary layer is known as thin film. The viscosity and thermal conductivity have been considered constant as well as variable or temperature dependent respectively. The steady and unsteady fluid flows have been assumed over a stretching sheet/cylinder. The complex fluids have been considering single and three fluid combined. In chapter one we discussed the basic concepts of fluid mechanics, different types of the fluids, fundamental equations, some non-dimensional parameters, the basic Williamson fluid model, Maxwell fluid model, Jeffrey fluid model, Walter’s-B viscoelastic fluid and the basic idea of Homotopy Analysis Method in detail. In chapter two we displayed the literature review of the concerned research. In chapter three we considered the effect of thermal radiations on a thin film of Williamson fluid over an unsteady stretching surface with variable properties of viscosity and thermal conductivity. The effect of thermal radiations and viscous dissipation terms are involved in the energy equation. The energy and concentration fields are also discussed with the Soret and Dufour effects. The effects of non-dimensional physical parameters like thermal conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter and Prandtl number have been discussed In chapter four we investigated the unsteady motion of Williamson Nano-fluid on a stretching sheet. The effect of thermal conductivity on temperature has also been considered. The governing equations are presented under the Dufour and Soret approximations. In order to understand the physical presentation of the embedded parameters such as Dofour number Du , Schmidt number Sc , Soret number Sr , the Brinkman Number Br , Williamson number and Radiation parameter R are graphically plotted and discussed. In chapter five we considered the mass and heat, transportation of Williamson fluid with variable viscosity and thermal conductivity over an unsteady shrinking and stretching surface. The shear stresses and thermal radiation field are also encountered in the time dependent energy equation. The model, employed for Williamson fluid, contains the Dufour and Soret effects. Study mainly focused to understand the physical appearance of the embedded parameters based on the characteristic length of the liquid flow. The obtained results are drafted graphically and discussed. In chapter six we considered the appearance of the boundary layer flow for non-Newtonian Walter’s B fluid over the surface of an unstable cylinder. The Dufour and Soret effects with heat and mass transfer have been faced in the flow. The effects of the involved physical parameters of the problem like Reynolds number, Walter’s B fluid parameter, Prandtl number, Schmidt number, Dufour and Soret numbers have been illustrated. The behavior of Skin friction, local Nusselt number and Sherwood number have been described numerically for the dynamic constraints of the problem. In the last chapter, we examined the features of liquid film non-Newtonian Nano-fluids under the influence of thermophoresis. For this exploration, we projected a model for Jeffrey, Maxwell and Oldroyd-B Nano-fluids concluded unstable stretched surface in the existence of an oblique magnetic field and also the thermal conductivity is measured directly related to the temperature whereas the viscosity invented inversely related to the temperature. Inserting the thermophoretic nanoparticles efficiently improves the thermal conductivity of Jeffrey Nano-fluid over the Oldroyd-B and Maxwell Nano-fluids. The model active for the Nano-liquid flow of Jeffrey, Maxwell and Oldroyd-B fluid encloses the Brownian motion parameter effect. Study mainly focused to understand the physical appearance of the embedded parameters based on the characteristic length of the liquid flow. The obtained results are drafted graphically and discussed.