Search or add a thesis

Advanced Search (Beta)
Home > Shallow Seismic Refraction Survey to Study Low Velocity Zone in Part of Thal Doab Area District Jhang

Shallow Seismic Refraction Survey to Study Low Velocity Zone in Part of Thal Doab Area District Jhang

Thesis Info

Author

Muhammad Ifrahim

Department

Deptt. of Earth Sciences, QAU.

Program

MSc

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1988

Thesis Completion Status

Completed

Page

63

Subject

Earth Sciences

Language

English

Other

Call No: DISS/M.Sc ES/37

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676717247306

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

لینی میسن

لینی میسن

            ماہ گذشتہ میں سائنٹفک رسالوں نے دنیا کے فربہ ترین لڑکے کی خبرِ وفات شائع کی ہے، اس کا نام لینی میسن تھا، وہ لیسٹر انگلستان کا باشندہ تھا، اس کا سن پندرہ سال کا تھا، اس کی کمر کی پیمائش ۲؍۱۔۱۶۴ انچ کی، سینے کی ۶۹ انچ کی، اور ران کی ۳۸ انچ کی تھی، اس کی وفات کے بعد بلحاظ فربہی اس کی جانشینی کا قریمۂ انتخاب امریکہ کے ایک ہشت سالہ لڑکے کے پر پڑا ہے۔ (اپریل ۱۹۲۰ء)

 

الوحدة العضوية في القصيدة العربية قديما وحديثا

The issue of harmony and unity in the Arabic criticism and poem is of prime concern, which gained the great importance in modern criticism; as various critiques are of the different opinions regarding its existence, significance, applications and concepts even; in both ancient Arabic criticism and modern poetry. The present study will investigate to find out its roots in the ancient Arabic criticism and poetry; and to prove its references in modern Arabic criticism and poetry while indicating how this issue is kept alive by contemporary poets.

Some Subclasses of Analytic Functions Related With the Generalizations of Functions With Bounded Boundary Rotation

Some Subclasses of Analytic Functions Related with the Generalizations of Functions with Bounded Boundary Rotation Geometric Function Theory on broad spectrum mostly deals with the geometric properties of univalent, multivalent, meromorphic functions etc. and Theorists paid much of their attention to the classes of these functions. Various subclasses of analytic functions related with the Carathéodory functions along with their generalizations were studied systematically in various aspects in the literature of the subject. The main focus of this study is to define certain new subclasses of analytic functions related with the functions of bounded boundary rotation and their generalizations. We use the idea of convolution and subordination along with the concepts of bounded Mocanu variation, Robertson functions, multiplier transformations etc. in defining these classes of analytic as well as multivalent functions. We also investigate and explore these classes and study various results like coefficient bounds, radius problems, inclusion results, integral and convolution preserving properties etc. and their relationships with the previously known results.