وہ عشتار دیوی کی معصوم داسی
(سید ماجد شاہ)
وہ عشتار دیوی کی معصوم داسی
جو چنچل بھی تھی، خوبصورت بھی تھی
اور مقدّس بھی تھی
مرے ساتھ شوخی میں مصروف تھی
اچانک سمندر میں لہریں اُٹھیں
ایسی طغیانی آئی ، تلاطم ہوا
کہ سنہری روئیں اس کے کندن بدن پر چمکنے لگے
رات روشن ہوئی
تھوڑے ڈھلکے ہوئے زاویے اس طرح سے مُدوّر ہوئے
جیسے مینا چھلکنے کو تیار ہو
اُس کی آنکھیں شفق بن کے جلنے لگیں
میں ہی کیا
وہ مِرا عکس جو اُس کی آنکھوں میں تھا
سُرخ ہونے لگا
میرے ہاتھوں کی بے تابیاں بڑھ گئیں
ہاتھ جاگے تو جس طرح مضراب سے تار چھڑنے لگے
سُر ملے تو قیامت کی سنگت ہوئی
پھول کھلتے رہے، خوشبوئیں چار اطراف میں رقص کرتی رہیں
اِک مقدّس اَلاؤ میں کچھ دیر تک ہم دہکتے رہے
پھر ہوا اِس طرح
جس طرح کہکشاں
پھلجھڑی کی طرح منتشر ہو گئی
Zakat is one of the most important elements of Islam, which is obligatory upon every able-bodied Muslim after fulfilling the conditions of Zakat. In this regard, zakat payers either pay their zakat themselves or the government collects zakat from them through financial institutions, in which a large part is obtained through bank accounts, so four points need to be researched in this article. 1. The accounts of the people in the bank will be counted according to which type of assets? The preferable opinion in this is that the bank accounts will be counted among the internal assets.2. Does the government have the right to withdraw zakat from people's deposits in the bank or the owner of the property? The opinion of the majority of scholars is that it is obligatory to give Zakat to the government of the external assets, and the government has the authority to ask for Zakat regarding the internal assets 3. Are bank accounts like loans? In summary, the status of a bank account is similar to a debt, but a new type of debt. 4. Are all the conditions of Zakat observed in Pakistani banks regarding the deduction of Zakat or not? From the evidences, it has been concluded that there are six flaws in the method of zakat collection through banks. In this paper, Analytical research methodology is adopted. In this paper, the researcher has preferred to derive concepts from the primary sources related to the subject and later has used secondary sources and contemporary references so that the subject is embellished by the combination of ancient and modern views.
In this thesis we study three di erent problems. First, we study a class of a multivalued perturbations of m-dissipative evolution inclusions with nonlocal initial condition in arbitrary Banach spaces. We prove the existence of solutions when the multivalued right hand side is Lipschitz and admits nonempty closed bounded but, in general case, neither convex nor compact values. Illustrative example is provided. Second, we prove two variants of the well known lemma of Filippov{Pliss in case of dynamical inclusions on time scale. Therst variant is when the right-hand side is Lipschitz continuous on the state variable. Afterward we introduce one sided Perron conditions for multifunctions on time scale and prove the second variant of that lemma. Some discussions on relaxed systems is provided. Third, we investigate fuzzy fractional integral inclusions under compactness type conditions. We prove the existence of solutions when the right-hand side is almost upper semicontinuous. We also show that the solution set is connected. Finally, an application to fuzzy fractional di erential inclusions is given.