Search or add a thesis

Advanced Search (Beta)
Home > Prime Bi-Ideals in Semigroups

Prime Bi-Ideals in Semigroups

Thesis Info

Author

Naila Kanwal

Department

Deptt. of Mathematics, QAU.

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2005

Thesis Completion Status

Completed

Page

60

Subject

Mathematics

Language

English

Other

Call No: DISS/M.Phil MAT/490

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676717621051

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

سی حرفی : ۹

سی حرفی۔۹
(ہک بیت وچ اٹھ حرف)
الف
الٰہی، میل ماہی نوں، ’ب‘ برے دن آئے نیں
ت
تلوار برہوں دی لٹکے، ’ث‘ ثواب کمائے نیں
ج
جوانی آخر فانی، ’ح‘حائل غم آئے نیں
خ
خوف حنیف وچھوڑے اندر، ’د‘ دکھاں دے سائے نیں

ذ
ذکر تیرے وچ رہندی، ’ر‘ رخ ویکھاں ماہی دا
ز
زیارت لکھ ثواباں، ’س‘ سوہنا چن چاہی دا
ش
شوخاں دے ناز نہورے، ’ص‘ صفا دل چاہی دا
ض
ضدی سنگ دل حنیف اے، مان حسن دی شاہی دا

ط
طواف کریں دن راتیں، ’ظ‘ ظالم کوئی خبر نہیوں
ع
عشق دے کٹھے عاشق، ’غ‘ غصہ تے جبر نہیوں
ف
فائدہ کی شکویاں سندا، ’ق‘ قسمت وچ اجر نہیوں
ک
کتھے چھڈ گیوں ماہی، کجھ حنیف نوں صبر نہیوں

ل
لیکھاں وچ درد وچھوڑا، ’م‘ ماڑے دا زور نہیوں
ن
نوازش وصل دی ہووے، ’و‘ وسیلہ ہور نہیوں
ہ
ہڈاں وچ درد وچھوڑا، ’لا‘ لہو دا زور نہیوں
ء
آخر حنیف ملے گا، ’ی‘ یاداں وچہ ہور نہیوں
سی حرفی ۔۱۰
(ہک مصرعہ وچ دو حرف)
الف
اللہ نوں سور پیارے، ’ب‘ بس کر کوئی ہور نہیوں
ت
توبہ کر آخر مرنا، ’ث‘ ثابت وچ گور نہیوں
ج
جمع کر عمل دی پونجی، ’ح‘ حاصل کجھ ہور نہیوں
خ
خوف حنیف خدا دا کریے، ’ر‘ رحمت باہجھوں ٹھور نہیوں
د
دوا گناہاں والی، ’ذ‘ ذکر وچ ڈھیندی اے
ر
رحمت وی لا متناہی، ’ز‘ زوراور تھیندی اے
س
سوہنا رب کرم کماسی، ’ش‘ شاہی نت جیندی اے
ص
صدیق حنیف نہ جھورے، آخر سچ منیندی اے

ض
ضعیف ایمانوں ہوئے، ’ط‘ طریقے بھلے نی
ظ
ظرافت رہی نہ مولے، ’ع‘ عمل نال تلے نی
غ
غازی تے ہین مجاہد، ’ف‘ فکراں وچ رُلّے نی
ق
قولاں دے سچے جیہڑے، پاون...

Digital Marketing Dalam Menghadapi Volatility, Uncertainty, Complexity, dan Ambiguity (VUCA)

Penelitian ini bertujuan untuk mengetahui strategi digital marketing industri halal pada Business Center (BC) Halal Network International Herba Penawar Alwahida Indonesia (HNI-HPAI) Pekanbaru 4 dalam menghadapi Volatility, Uncertainty, Complexity dan Ambiguity (VUCA) di era society 5.0 dan untuk mengetahui tantangan yang ada di era si society 5.0 pada BC HNI-HPAI Pekanbaru 4. Penelitian ini merupakan penelitian lapangan dengan menggunakan pendekatan kualitatif. Informan penelitian berjumlah 3 orang. Sumber penelitian yang digunakan adalah sumber primer dan sumber sekunder. Hasil penelitian menemukan bahwa strategi pemasaran digital yang dilakukan adalah menggunakan media whatsapp dan juga memanfaatkan beberapa media website dan aplikasi digital yang telah disediakan oleh HNI pusat dan unofficial, dan juga BC HNI Pekanbaru 4 mengandalkan para mitra-mitranya dalam pemasaran di media digital. Pada kondisi uncertainty, dalam mengumpulkan informasi BC menggunakan sosial media, dan melakukan edukasi. Pada kondisi kompleksitas, kesulitan yang di alami yaitu masih kekurangan pengelola khusus dibagian sosial media seperti facebook (fb), dan Instagram (ig). Sedangkan pada kondisi ambiguity, sasaran HNI adalah para generasi milenial yang sudah mahir menggunakan media digital. Adapun tantangan yang ada di era society 5.0 ini adalah harus siap dengan kehadiran teknologi, aktif dan mampu mengelola sosial media, inovasi produk, dan terus mengupgrade skill di era society 5.0.

Mr Image Reconstruction Using Pmri and Compressed Sensing

MR Image Reconstruction Using PMRI and Compressed Sensing Magnetic Resonance Imaging (MRI) is a safe and non-ionizing medical imaging modality that provides excellent soft tissue contrast. The main limitation in MRI is its long data acquisition time. Parallel MRI (pMRI) and Compressed Sensing (CS) provide a framework to lessen the MRI data acquisition time. Both pMRI and CS acquire less data in k-space and then minimize the aliasing artifacts by using dedicated reconstruction algorithms. PMRI was introduced in late 1990’s and some of its reconstruction algorithms are commercially available in the latest MRI scanners. CS was introduced in 2007 and it is mostly used in research. Recently, Graphical Processing Units (GPU) have been used to reduce the computation time in the parallel algorithms. GPU can also be used in MRI reconstruction algorithms to reduce the computation time of reconstruction algorithm (one of the main limitation in MRI). The objective of this thesis is to explore and develop new methods to improve the performance of pMRI and CS. There are four main contributions in this regard. (i) A Graphical Processing Unit (GPU) based design is developed in Compute Unified Device Architecture (CUDA) for fast implementation of Sensitivity Encoding (SENSE), a pMRI reconstruction algorithm. The results show that the proposed GPU implementation of SENSE significantly reduces its computation time while maintaining the reconstructed image quality as compared to the conventional SENSE implementation. (ii) Receiver coil sensitivity information plays an important role in SENSE reconstruction. Eigen-value method is used for sensitivity estimation in the proposed work for SENSE reconstruction on GPU and the results are compared with the conventional Pre-scan method. The results show that Eigen-value method considerably improves the SNR of the reconstructed images as compared to the results obtained using Pre-scan method. (iii) Conjugate Gradient SENSE (CG-SENSE), proposed by Pruessmann uses both the Non-Cartesian (NC) and Cartesian k-space for image reconstruction. NC trajectories are increasingly used in recent MR imaging because they are fast and provide efficient coverage of k-space. NC trajectories are computationally extensive and require special operations including gridding and de-gridding. A GPU based implementation of the gridding and de-gridding operations is proposed in this thesis that significantly reduces the computation time of CG-SENSE while maintaining the reconstructed image quality. (iv) A combined application of CG-SENSE (a pMRI reconstruction xi algorithm) and Projections onto Convex Sets (POCS) (a CS reconstruction algorithm) is proposed for reconstructing fully-sampled MR images from the under-sampled data. The results of the proposed method are compared with CG-SENSE and POCS reconstruction separately. The results show that the proposed method allows higher acceleration factors in MRI data acquisition and notably improves the reconstructed image quality.