چرخہ
کت چرخہ داج بنا کڑیے
خوشیاں نال سوہرے جا کڑیے
تیرے چرخے دی گھوگ پیاری نی
توں کت کت چرخہ ہاری نی
دکھ ہٹسن ، دور بیماری نی
کر رب دی حمد ، ثناء کڑیے
کت چرخہ داج بنا کڑیے
تیرے چرخے دی ماہل پرانی نی
اُٹھ راتیں رڑک مدھانی نی
فر مکھن آیا جانی نی
توں رب دا ذکر اُلاء کڑیے
کت چرخہ داج بنا کڑیے
تیرا چرخہ بہت پیارا نی
ایہہ دنیا کوڑ پسارا نی
کیہ کلّی ، کیہ چوبارا نی
گئے رب دی من رضا کڑیے
کت چرخہ داج بنا کڑیے
توں چرخہ منگ لیائی نی
توں چرخے تند نہ پائی نی
کیوں کیتی بے پروائی نی
نہ ویہلیاں وقت گنوا کڑیے
کت چرخہ داج بنا کڑیے
تیرے چرخے دی ہتھی بھوندی نی
تینوں نیندر بڑا ستوندی نی
راتیں اُٹھ نہ چھلیاں پوندی نی
کیہ دسیں گی اُوتھے جا کڑیے
کت چرخہ داج بنا کڑیے
تیرے چرخے دی ہتھی بھاری نی
تینوں حُسن دی چڑھی خماری نی
تیری مت گئی کیوں ماری نی
اُٹھ غافل! رب دھیا کڑیے
کت چرخہ داج بنا کڑیے
تیرے چرخے دے مُنے لمبے نی
تینوں ہر دم پین اچنبھے نی
دل تیرا تھر تھر کمبے نی
جد لیا کہاراں چا کڑیے
کت چرخہ داج بنا کڑیے
تینوں چرخہ کس پھڑایا نی
دس توں کی داج بنایا نی
ویہلے بہہ بہہ وقت گنوایا نی
سس پچھسی جھڑکاں پا کڑیے
کت چرخہ داج بنا کڑئیے
تیرا چرخہ رنگ رنگیلا نی
کر اگانہہ دا کوئی حیلہ نی
تیرا مرشد پاک وسیلہ نی
دینا سائیں پار لنگھا کڑیے
کت چرخہ داج بنا کڑیے
Hazrat Abdul Rehman (may Allah be pleased with him) belonged to Arab tribe of Quraish and was a close relative of Mohammad (peace be upon him). At the time of conquest of Makkah He (may Allah be pleased with him) entered the circle of Islam. He (may Allah be pleased with him) is counted among the companions of Muhammad (may Allah be pleased with him) who came to sub-continent specially Balochistan in order to preach for Islam and Jihad during the Khilafat of orthodox caliphs. He (may Allah be pleased with him) came to Balochistan twice for Jihad and conquests first during the Khilafat of Hazrat Usman (may Allah be pleased with him) and second time in the early era of Hazrat Muawia (may Allah be pleased with him). He (may Allah be pleased with him) played a vital role in the wars of Balochistan. He (may Allah be pleased with him) established Zehri his abode and capital after conquering Kalat, Khuazdar (Sajistan), Kachi, Gandhava, and Chaghi, and from here he expanded the series of his conquests till Kabul and Qandar. Besides this, he included many areas of sub-continent in the Islamic empire of conquered areas. His (may Allah be pleased with him) life is consists of great chapters of sincerity in deeds. Wisdom and valor, determination fearlessness, strife, hospitality, simplicity and patience. He (may Allah be pleased with him) is counted among the great generals of Islam had the honour to have carried the message of Holy faith in every corner of Balochistan in tough and unfavorable conditions and planted the flag of Islam in Balochistan forever.
The goal of this thesis is to present generalized geometry of two famous chain complexes through generalized homomorphisms. First one is Grassmannian configuration chain complex of free abelian groups generated by all the projective configurations of m points in any n-dimensional vector space Vn(F) defined over some arbitrary field F, while other is Goncharov polylogarithmic group complex of classical polylog groups. Many researchers defined geometry of Grassmannian configuration with classical polylogarithmic groups only for lower weights, i.e. n = 2 and 3, to present commutative diagrams. Here geometry for lower weights is not only redefined in different ways but also it is generalized for higher weights, i.e. n = 4, 5, 6 up to any weight n ∈ N. Initially, geometry for special cases for weight n = 2 and n = 3 is introduced in detail. Bloch Suslin polylogarithmic group complex and Grassmannian configuration chain complexes are connected through morphisms for weight 2 such that the associated polygon is proven to be commutative and composition of morphisms is bi-complex. For weight 3, Goncharov classical poly-logarithmic and Grassmannian configuration chain complexes are connected to provide commutative and bi-complex diagram. Then geometry of Goncharov motivic complex and Grassmannian configuration complex is defined for weight 4 up to generalized weight n ∈ N through two types of generalized morphisms. All the associated diagrams are shown to be bi-complex and commutative. Lastly, and most importantly, extensions in geometry of Goncharov polylogarithmic and Grassmannian configuration chain complexes are introduced to generalize all morphisms between the above two chain complexes and also to generalize functional equations of polylogarithmic groups up to order n. For extensions of geometry, additional morphisms are introduced for weight 3 up to higher weight 6, to extend commutative and bi-complex diagrams. Then these extensions in geometry are generalized for any weight n to all morphisms between above two chain complexes. Associated generalized commutative and bi-complex diagrams are exhibited