نشورؔ واحدی
ہندوستان میں فراق گورکھپوری کا ماتم ابھی ختم نہیں ہوا تھا کہ نشور واحدی بھی داغِ مفارقت دے گئے، ان کا کلام ان کی دلکش اور مترنم آواز میں اعظم گڑھ کے مشاعروں اور دارالمصنفین کی نجی مجلسوں میں ان سے برابر سننے میں آیا، متین، سنجیدہ اور پرانی تہذیب کے حامل تھے، بلیاوطن تھا، مگر زندگی حلیم کالج کانپور میں ایک استاد کی حیثیت سے گذاری، شروع میں تعلیم دائرہ رفیع الزمان الہ آباد کے بزرگ شاہ شفاء اﷲ سے پائی جن سے فلسفۂ اسلام، فلسفۂ خودی اور مولانا روم کے افکار کے بہت سے رموز و نکات کو اچھی طرح سمجھا ان کا خوش گوار اثر ان کی شاعری پر بھی پڑا، ان کے کلام کے کئی مجموعے آتش ونم، شورنشور، صہبائے ہند اور فروغ جام کے نام سے شائع ہوئے، اصغر، حسرت، فانی، جگر اور فراق گورکھپوری کی صف کے بعد جو شعراء کھڑے نظر آئے، ان میں نشور واحدی اپنے شاعرانہ کمال کی گل پیرہنی، مشاگلی اور شیریں بیانی، پھر فکر و فن کے رنگ و آہنگ کی جلوہ گری میں کسی سے کم نہیں نظر آئے، بلکہ بعض حیثیتوں سے اپنے معاصروں میں قدآور دکھائی دیئے۔
۱۹۴۰ء میں جناب شاہ معین الدین احمد ندوی (سابق ناظم دارالمصنفین) نے ان کے مجموعۂ کلام ’’صبہائے ہند‘‘ کے شروع میں ایک مختصر تبصرہ میں لکھا تھا کہ ان کی شاعری میں تغزل کی رنگینیاں بھی ہیں، قوم و وطن کے لئے پیامِ زندگی بھی، مذہب و ملت کا درس بھی، الفاظ کی سلاست بھی، بیان کی لطافت بھی، معتدل شوخی بھی، اور جوش و سرمستی کے نمونے بھی ہیں، اپنی ان شاعرانہ خوبیوں کو انھوں نے آخر وقت تک قائم رکھا، نثر میں ان کی ایک کتاب اسلام میں فلسفۂ خودی پر بھی ہے، دعا ہے کہ ان کا اسلامی جذبہ بارگاہ...
Sistem Pendukung Keputusan adalah bagian dari sistem informasi berbasis komputer termasuk sistem berbasis pengetahuan atau manajemen pengetahuan yang di pakai untuk mendukung pengambilan keputusan di dalam suatu organisasi atau perusahaan. Saat ini pengelolaan data penilaian karyawan perusahaan masih dilakukan dengan manual, sehingga semakin besar resiko kesalahan dalam mengelola data dan membutuhkan waktu yang relatif lama. Untuk mempermudah perhitungan penentuan kinerja karyawan terbaik maka penulis menggunakan metode Simple Additive Weighting (SAW). Metode simple additive weighting ini di pilih karena metode ini menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perangkingan yang akan menyeleksi alternatif-alternatif yang sudah di tentukan seperti etika atau kepribadian, kedisplinan, absensi, tanggung jawab, kerja sama, kemampuan memimpin, kecepatan kerja, ketelitian kerja dan kualitas hasil kerja. Dengan metode perangkingan tersebut, diharapkan penilaian akan lebih tepat karena didasarkan pada nilai kriteria dan bobot yang sudah ditentukan sehingga akan mendapatkan hasil yang lebih akurat terhadap siapa yang akan menerima reward/penghargaan tersebut.
In the proposed study, we present several significant results annexed to the wellknown Hermite-Hadamard inequality. Also, we focus on various newly established classes of convex functions and their corresponding variants of Hadamard type inequalities. This PhD dissertation is devoted to sift out certain inequalities of Hadamard type from the class of convex functions to their recently established versions, namely MT-convex functions, co-ordinated convex functions etc. In addition, we are mainly concerned with various updated versions and analogues of the well-known Hermite-Hadamard inequalities in terms of integrations such as, classical integrals, Riemann-Liouville’s fractional integrals and α-fractional conformable integrals. Eventually, as applications, the proposed results are further utilized to achieve some novel bounds for special means of positive real numbers. Also, some explicit bounds are also being derived to the versatile composite quadrature rules in terms of distinct functions belonging to different classes of convex functions. At the end, different inequalities have been obtained pertaining to F-divergence measures. In the first chapter, we present some basic concepts, certain necessary terminologies and recall a few important results from the theory of convex analysis in general, and convex sets and convex functions in particular, where many of them will be encountered through out the thesis. Also, these core and elementary notions will provide comparatively a better foundation to the readers in the understanding of the proposed study. In the second chapter, we present several integral identities for differentiable, twice differentiable and three times differentiable functions connected with both left and right hand parts of the classical Hermite-Hadamard inequality. Then, we obtain various Hadamard type inequalities based on these identities via classical integrals. These results have some natural applications to special means of real numbers and trapezoidal as well as midpoint formulas. In the third chapter, we discover two novel integral identities for twice differentiable functions. Then, we employ these identities to establish some general inequalities for the functions whose second derivatives absolute values are MTconvex. These inequalities provide us some new estimates for the right hand side of the Hermite-Hadamard type inequalities for classical integrals and Riemann- Liouville’s fractional integrals. Next, by making use of these results, we point out applications to some means of real numbers and several error estimations for the trapezoidal formula. In the fourth chapter, we obtain some new Hermite-Hadamard type inequalities for convex functions on the co-ordinates. These results refine the earlier work done by Dragomir and Chen . In the fifth chapter, we establish two integral identities for conformable fractional integrals. Then, under the utility these results, we design several integral inequalities connected with the left and right hand side of the Hermite-Hadamard type inequalities for conformable fractional integrals. These results extends the earlier known results from classical integrals to conformable fractional integrals. In the sixth chapter, we give applications of our main results established in the Chapters 2, 3, 4 and 6 respectively. In addition to that, in Section 6.1 applications to special means of real number are provided. Then, in the next Section 6.2, some new error estimates for trapezoidal formula are given. Furthermore, in the next Section 6.3, error estimates for midpoint formula are addressed. In the last Section 6.4, some applications to F-Divergence measures are provided.