Search or add a thesis

Advanced Search (Beta)
Home > On Polynomial Codes

On Polynomial Codes

Thesis Info

Author

Naveed Ahmed Azam

Department

Department of Mathematics, QAU

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2012

Thesis Completion Status

Completed

Page

57

Subject

Mathematics

Language

English

Other

Call No: Diss/ M. Phil . MAT/ 955

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676717706150

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ہجر کے تین سال

لو آج تین سال بیت گئے
ان سالوں میں تمھاری مہک

مجھ میں ہر سُو رہی
کہ زندگی تمھاری تھی
بعد بھی تمھاری رہی

پر کیا تم جانتی ہو جاناں!
وقت کے اس بوجھ نے
جوانی میں ہی مجھے

برسوں پرانا کر دیا
کمزور بنا دیا، ضعیف کر دیا

پر میں جانتا ہوں کہ ابھی
مجھے اک لمبا انتظار کرنا ہے
ابھی اور سال بیتنے ہیں
ابھی اسی آگ میں جلنا ہے

پر میں اس بات سے ڈرتا ہوں جاناں!

کہ وقت کے اس بوجھ سے میں
اس قدر عمر رسیدہ ہو جاؤں
کہ دم ہی توڑ جاؤں

اور آخر پُرنم آنکھیں
رُکتی ہوئی سانسیں
شمار کرنے سے قاصر ہوں
اور یہ کہتی ہوں

لو آج وقت کے اندھیرے جیت گئے
لو آج ہم ہی بیت گئے

غیر مسلموں سے تعلقات اور بقائے باہمی کی اساس: سیرت النبیﷺ کے تناظر میں

Islam is universal Religion which not only clear with issues related to Muslims but also clarify the rules and regulations to have intinary with Non-Muslims. Islam emphasizes on primary/ basic rules about relationship of Muslims and Non- Muslims Communities; justice, peace, mutual harmony and co-operation. No force conversion and freedom of thought, Non compulsion Of impartiality convenant. Islam forces on mutual existence in according of these rules. So, clash of civilizations can be avoided in the present age.

Approximation of Planar Curves for Computer Aided Designs

Computer Aided Design (CAD) is used for the manufacture and analysis of designs in industry. The transcendental planar curves such as spirals and conics are inconsistent with the Computer Aided Design system. In CAD planar curves, which provide free-form mathematical description of shapes, are approximated to parametric curves and used as the basic building block. The planar curves such as circle, parabola, ellipse, hyperbola are employed in the research work presented here for shape expression, designing of mechanical accessories (tube benders, cutters, wrenches, clamp systems, inspection gauges), designing of railway and highway routes, construction of roller coaster and outline of the fonts in Computer Aided Design system. The cubic C-Bézier curve, cubic H-Bézier curve and parametric rational cubic curve are practiced to approximate these planar curves. These curves are in control point form and satisfy the properties of famous ordinary Bézier and spline curves. We establish that these curves, which are generalization of cubic Fergusons curves, cubic Bézier curves and cubic uniform B-spline curves are more efficient and closer to the control polygon than the ordinary Bézier and spline curves. The proposed approximation schemes are designed to control the geometric features of planar curves with the geometric constraints. The control points of the cubic C-Bézier curve, cubic H-Bézier curve and parametric rational cubic curve are evaluated by geometric approximation constraints. We use a number of optimization techniques to control the error of the proposed schemes and to provide a unique approximating curve for a given planar curve. The schemes in practice at present approximate planar curves in terms of control points and weights of rational quadratic Bézier curve. The main contribution of this thesis is that the proposed geometric approximation schemes are based on end tangents and curvatures of planar curves. Therefore, these approximation schemes do not need the rational quadratic Bézier representation of planar curves. Numerical experiments suggest that the presented approximation schemes of this thesis are simple, effective and feasible. The absolute errors for developed approximation schemes are less than the prevailing schemes. The smaller absolute error confirms the applicability and efficiency of the proposed methods.