Search or add a thesis

Advanced Search (Beta)
Home > Child Rearing Practices in a Pukhtoon Society

Child Rearing Practices in a Pukhtoon Society

Thesis Info

Author

Rakhshi Saleem

Department

Deptt. of Anthropology, QAU.

Program

MSc

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2001

Thesis Completion Status

Completed

Page

97

Subject

Anthropology

Language

English

Other

Call No: DISS/M.Sc ANT/532

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676717997076

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

حکیم محمد اسحاق

حکیم محمد اسحاق مرحوم
اعظم گڑھ کے مشہور طبیب حاجی حافظ محمد اسحق گزشتہ مہینہ اﷲ کو پیارے ہوئے، ان کی عمر پچاسی سال سے زیادہ تھی، دہلی کے طبیہ کالج میں طب کی تعلیم پائی، حکیم محمد اجمل خاں کے شاگرد تھے، ان کے مطب میں ان کے نسخے لکھا کرتے تھے، دہلی سے آکر اعظم گڑھ میں طبابت شروع کی، اپنے فن میں بڑی مہارت حاصل کرلی تھی، مریضوں کا علاج دلسوزی سے کرتے، علاج اور نسخہ نویسی میں فن کی روایت اور وقار کا پورا لحاظ رکھتے، کسی مریض کو یہ شکایت نہیں ہوئی کہ ان کی تشخیص غلط تھی، یا ان کا نسخہ صحیح نہیں تھا، شہر کے ہندو مسلمان کے ہر طبقہ میں عزت کی نظر سے دیکھے جاتے، شروع سے عمر کے آخر لمحہ تک کانگریسی رہے، ہر زمانہ میں کھدر پہننے کا اہتمام رکھا، ترک موالات، خلافت اور جمعیت العلماء کی تحریکوں میں نمایاں حصہ لیتے رہے، مولانا حسین احمد مدنیؒ سے بیعت بھی ہوگئے تھے، دارالمصنفین سے بڑا قلبی لگاؤ رکھا، شروع میں یہاں ہفتہ میں تین روز آتے، ان کی طبی مشغولیت بڑھی تو ہفتہ میں دور روز آنے لگے، آخر میں اپنی کبرسنی کے باوجود ہفتہ میں ایک روز ضرور آتے، ان کا یہ معمول ساٹھ سال تک رہا، دارالمصنفین کی مسجد میں برسوں تراویح پڑھائی، استاذی المحترم مولانا سید سلیمان ندوی، مولانا مسعود علی ندوی اور شاہ معین الدین احمد ندوی کو ان کے طریقہ علاج پر کامل اعتماد رہا، بولتے کم تھے، مگر ان کی زبان سے جو کچھ نکلتا، اس میں وزن، وقار اور اخلاص ہوتا، ان کی وفات سے شہر ایک ممتاز طبیب اور دارالمصنفین ایک بہت ہی مخلص، وضعدار اور کریم النفس قدرداں سے محروم ہوگیا، اﷲ تبارک و تعالیٰ ان کو کروٹ کروٹ جنت نعیم عطا کرے، آمین۔ (صباح الدین عبدالرحمن،...

فتوی اور فتاوی الکاملیہ کا تعارف و اہمیت

From the very beginning Islam has given great importance to discipline. In every facet of life discipline has a role to play. Today when we delve deep in to our lives, we are amazed as to how it has always proved its worth. It has brought the tide of revolution in everyone's mind. Similarly, the element of discipline saves a society from disruption and instability. It infuses in life satisfaction and contentment. Contrarily, indiscipline and mismanagement give birth to dejection and dissatisfaction. Time management plays a vital role in the establishment of discipline in a society. Considering the vast importance of time management in the light of discipline, the following article throws a great deal of light on it in the Islamic perspective.

Generic Urdu Nlp Framework for Urdu Text Analysis: Hybridization of Heuristics and Machine Learning Techniques

The internet was initially designed to present information to users in English. However, with the passage of time and the development of standard web technologies such as browsers, programming languages, libraries, frameworks, databases, front and back-ends, protocols, APIs, and data formats, the internet became a multilingual source of information. In the last few years, the natural language processing (NLP) research community has observed a rapid growth in online multilingual contents. Thus, the NLP community maims to explore monolingual and cross-lingual information retrieval (IR) tasks. Digital online content in Urdu is also currently increasing at a rapid pace. Urdu, the national language of Pakistan and the most widely spoken and understandable language of Indian sub-continent, is considered a low-resources language (Mukund, Srihari, & Peterson, 2010). Part of speech (POS) tagging and named entity recognition (NER) are considered the most basic NLP tasks. Investigation of these two tasks in Urdu is very hard. POS tagging, the assignment of syntactic categories for words in running text is significant to natural language processing as a preliminary task in applications such as speech processing, information extraction, and others. Named entity recognition (NER) corresponds to the identification and classification of all proper nouns in texts, and predefined categories, such as persons, locations, organizations, expressions of times, quantities and monetary values, etc. it is considered as a sub-task and/or sub-problem in information extraction (IE) and machine translation. NER is one of the hardest task in Urdu language processing. Previously majority Urdu NER systems are based on machine learning (ML) models. However, the ML model needs sufficiently large annotated corpora for better performance(Das, Ganguly, & Garain, 2017). Urdu is termed as a scared resource language in which sufficiently large annotated corpus for ML models’ evaluation is not available. Therefore, the adoption of semi-supervised approach which is largely dependent on usage of the huge amount of unlabeled data is a feasible solution. In this thesis, we propose a generic Urdu NLP framework for Urdu text analysis based on machine learning (ML) and deep learning approaches. Initially, we addressed POS challenges by developing a novel tagging approach using the linear-chain conditional random fields (CRF). We employed a strong, stable, balanced language-independent and language dependent feature set for Urdu POS task and used the method of context words window. Our approach was evaluated against a support vector machine (SVM) technique for Urdu POS - considered Abstract WAHAB KHAN Reg: No. 72-FBAS/PHDCS/S12 vi as the state of the art - on two benchmark datasets. The results show our CRF approach to improving upon the F-measure of prior attempts by 8.3 to 8.5%. Secondly, we adopted deep recurrent neural network (DRNN) learning algorithms with various model structures and word embedding as a feature for the task of Urdu named entity recognition and classification. These DRNN models include long short-term memory (LSTM) forward recurrent neural network (RNN), LSTM bi-directional RNN, backpropagation through time (BPTT) forward RNN and BPTT bi-directional RNN. We consider language-dependent features such as part of speech (POS) tags as well as language independent features such as N-grams. Our results show that the proposed DRNN-based approach outperforms existing work that employ CRF based approaches. Our work is the first to use DRNN architecture and word embedding as a feature for Urdu NER task and improves upon prior attempts by 9.5% in the case of maximum margin.