حضرت خان بابا ؒدی نذر
تیرے در تے میں بابا آئی کدوں دی کھڑی
پاویں جھات کرم دی آوے دید دی گھڑی
تیرے در توں سوالی کدے جان نہ خالی
میں پکڑ کے جالی بابا کدوں دی کھڑی
توں ایں خواجہ اجمیری دا بوہت پیارا
تونسے والیاں دی اکھیاں دا توں ایں ستارا
میری شوہ وچ کشتی ، نہیوں دسدا کنارا
قبلہ عالم دے پیارے جاوے غم دی گھڑی
تیرے در تے میں بابا آئی کدوں دی کھڑی
ہور کج وی نہ منگاں ، بخشو اپنی غلامی
ایس در تے ای گزرے میری عمر تمامی
تیرے جھاڑو میں دیساں ایہو بھردی میں حامی
تیرا تک کے دوارہ ، در تیرے آ وڑی
تیرے در تے میں بابا آئی کدوں دی کھڑی
جنھاں یادِ خدا وچ ، ساری زندگی گزاری
ناں اونہاں دا لیاں ٹلدے دکھ تے بیماری
سیاں کرن سلاماں ایتھے پیاں وارو واری
جمعرات نوں لگے ایتھے رونق بڑی
تیرے در تے میں بابا آئی کدوں دی کھڑی
تساں قادری سائیںؔ تے وی کرم کمایا
بخش اوہنوں امامت، اوہدا شان ودھایا
خاص کیتی عنایت ، درشن چا کرایا
وسے قادریؔ اُتے انجے رحم دی جھڑی
تیرے در تے میں بابا آئی کدوں دی کھڑی
John Rawls, an American Political Philosopher worked on the very idea of justice in his writings throughout his life. He was of the opinion that an institution is just and fair only when its principles and rules are prepared to benefit all the members of the society equally and if there is an unequal distribution then it must advantage all of them especially the ones who are least i.e. Needy. The political institutions must shape up such kind of policies in order for the development of the wellbeing of the individuals in the society by providing them with resources, opportunities, basic necessities etc. Equally. Whereas, the conception of social justice is also based on equality and the human rights where they could be treated as free and equals i.e. An egalitarian society. In this research paper we will analyze the significance of John Rawl’s theory
The aim of this research is to investigate some contractions and establish the existence results of single and multivalued mappings in frame work of some abstract space. Banach (1922) presented a fixed point theorem, namely Banach contraction theorem, which states that, a contraction mapping has a unique fixed point in a complete metric space. This theorem is widely applicable in proving the existence of solutions of functional equations under certain conditions. This theorem is based upon the iterative process, so it can be easily implemented on computer. This theorem was a revolution in fixed point theory. Later on , several generalizations of this theorem have been obtained. Fixed point results are widely studied in the framework of topological, metric and ordered oriented spaces. It is interesting to study that a nonlinear functional equation T(x) = x (where T is some linear or nonlinear operator defined on metric or fuzzy metric space) has either a solution or possess no solution. If the nonlinear functional equation has any solution, then it is interesting to find some algorithms which lead to an appropriate solution, but if nonlinear functional equation has no solution, then to try and find some approximate solution. The approximation, optimization and fixed point theory incorporate the main theme of nonlinear analysis. The best approximation theory is applicable in variety of problems arising in nonlinear functional analysis. Banach (1922) fixed point theorem is vastly applicable in proving the existence of solutions of functional equations under certain conditions. Many authors generalized Banach contraction principle in various directions. To address the question, if a nonlinear functional equation has no solution, it is recommended to approximate the solution which solves the optimization problem such that d(x, T x) is minimum. Ky Fan’s (Fan (1969)) best approximation result has been used when some nonlinear functional equations have no solution. In this thesis, best proximity point results in non-Archimedean fuzzy metric space are proved and some optimal best proximity point results are also obtained. These results provides the existence of optimal approximate solutions to some equations which have no solution. Further, fuzzy optimal coincidence point results for different proximal contractions in the framework of complete non-Archimedean fuzzy metric space are obtained. These results also holds in fuzzy metric spaces when some mild assumptions are added in the domain of involved mappings. In the next part of thesis, best proximity point results in a complete non-Archimedean fuzzy metric space with ordered structure have been discussed. Further, a class of multivalued mappings is introduced which satisfies Suzuki type generalized contractive condition in the framework of fuzzy metric spaces and some fixed point results are obtained for such kind of mappings. In next part of this thesis, Suzuki type contraction conditions are further generalized as Suzuki type F−contraction fuzzy mapping in ordered metric spaces. As an application, a common fixed point result for hybrid pair of single and multivalued mappings, the existence and uniqueness of common bounded solution of functional equations arising in dynamic programming are obtained. The obtained results generalize and extend various results in the existing literature. In each chapter, some examples are provided, which shows the validity of the results along with couple of remarks about the comparison of obtained results with the existing ones in the literature.