كل 15 رباعیات اس مونوگراف میں شامل ہیں۔ بال جبریل سے گیارہ (11) رباعیات کا انتخاب شامل ہے۔ جبکہ (4) رباعیات ” ارمغان حجاز “سے منتخب کی گئی ہیں ۔ مونو گراف کا مقصد طویل کتب کی بجائے کسی شخصیت کے بارے میں مختصرا ایسا مواد تیار کیا جائے جس میں اس شخصیت کی زندگی، کارناموں اور صلاحیتوں کا جامع نقشہ پیش کیا جاسکے۔ یہ ایک کٹھن کام ہے کیونکہ مختصر لکھنے کے لیے طویل مطالعہ درکار ہوتا ہے تب ہی مختصر لکھا جا سکتا ہے۔
اقبال کی زندگی کا صرف ایک پہلو نہیں ہے اس لیے علامہ اقبال پر مونوگراف لکھنا بہت ہی مشکل کام ہے مگر پروفیسر عبد الحق نے جس دلجمعی سے اس نصب العین کو نبھایا ہے اس کے لیے آپ داد کے مستحق ہیں۔ کوئی اور ہوتا تو شاید درمیان میں ہی چھوڑ کر راہ فرار اختیار کر چکا ہوتا مگر آپ نے اس قدر روانی سے لکھا ہے کہ پڑھتے وقت زبان بھی نہیں رکتی اور قاری خود کو حیات اقبال میں محسوس کرنے لگتا ہے۔
Previous literature reveals diverse aspects of Balāghah (Arabic Rhetoric) and Majāz (figurative language), but very scanty literature exists on the evolution of both Balāghah and Majāz in Arabic language. This paper attempts to take an exhaustive review the existing literature in order to find out the stages and the factors which helped in the evolution of Balāghah and Majāz. The review reveals that the factors for development of Balāghah in Arabic language and rhetoric are figures of profane literature and their modification, evolution from oral tradition to written tradition, doctrine of ᾽I‛cjāz, doctrine of laḥn and Greek literature. The review also revealed the gradual evolution of Majāz through various stages which culminated in the works of Al-Jurjāni (d.471). The paper argues that Arabic rhetoric has remained stagnant since Al-Jurjāni, and it needs innovation in light of modern linguistic theories. This paper is a modest contribution to the literature on Arabic rhetoric and Majāz which may help the researchers working on Arabic rhetoric and metaphor, but it would recommend further research of classical and modern literature in order to achieve more insights on the evolution and development of Arabic rhetoric
Due to diversity in nature, fluids are present everywhere in universe. We go through air, a form of fluid. We use water in our everyday life, which is much important fluid for the perpetuity of living organism. We use fluid in the form of gases for breathing and for different activities of everyday life. The whole universe is covered with the invisible layers of gas. A gas flows through conduction, convections and radiations. The flow of such gaseous materials attracted different researchers of mathematical society. The main theme of this Thesis is the investigation of the behavior of thermal diffusion in the radiating flow of gases. Flow is studied in an open ended channel, which is stationary and having uniform temperature. Fluid is gradually moving under the effect of temperature. We used Laplace transform for the solutions of non dimensional fractional governing equations of radiating flow. Moreover Caputo time fractional derivative have been used for the dealing of temporal derivative. Closed form analytical solutions for Velocity field and thermal expansions are expressed as Robotnov function, Wright and Hartley function. The effects of factional order parameter α, Prandtl number Pr, Grashof number Gr, Radiative parameter R are examined by the graphical interpretations. It is observed that small value of time t has a role activator at the fluid velocity for increasing values of factional order parameter α. Where, large value of time ’t’ inhibits the flow of fluid for increasing values of factional order parameter α. Large values decreases velocity but the effect of large value of time with increasing value of Prandtal is not significant. Increased in value of radiating parameter R decrease the speed of gas and finally Grashof number Gr has direct relation with velocity. The fractional differential equation for temperature distribution operated by Laplace transform. The partial differential equation of velocity is solved numerically with nanoparticle namely copper with the water as based fluid by using Stehfests algorithm. The effects of fractional order derivative and physical parameters are graphically investigated.