اقبال کا پہلا شعری مجموعہ کلام جو فارسی زبان میں منظر عام پر آیا۔ 1915ء میں لاہور سے شائع ہوا۔ پروفیسر عبد الحق نے مختصر تعارف میں لکھا ہے کہ اسرار خودی کا پورا کلام مثنوی کی صورت میں ہے۔ اسرار خودی کی وجہ سے اقبال مفکر شاعر کے طور پر تسلیم کیے گئے خودی اقبال کی شخصیت کا جزو اور
شناخت بن گئی۔ اقبال کے فلسفہ خودی میں انسانوں کی بقا کا راز مضمرہے۔ اور قوموں کی آبرومندی کا نسخہ شفا بھی خودی میں پوشیدہ ہے۔ پروفیسر عبدالحق نے خودی کے تین مراحل اطاعت ، ضبط نفس اور نیابت الٰہی کا ذکر بھی کیا ہے ۔ تمہید کے بعد دیگر ذیلی عنوانات بھی نظم کا حصہ ہیں۔اس مثنوی کا آغاز اقبال نے 1911ء میں کر دیا تھا۔ عطیہ بیگم کے نام ایک خط میں لکھتے ہیں :
”قبلہ والد صاحب نے فرمائش کی ہے کہ حضرت بو علی قلندر کے طرز پر ایک فارسی
مثنوی لکھوں ۔ اسی راہ کی مشکلات کے باوجود میں نے کام شروع کر دیا ہے “ (13)
اقبال نے کچھ اشعار بھی لکھ کر عطیہ فیضی کو بھجوائے ۔ وہ اشعار اسرار خودی میں شامل ہیں ۔ صرف یہ خط ہی اسرار خودی کی اشاعت کا باعث نہیں بلکہ اور بھی بہت سے محرکات ایسے ہوں گے جو مفکر شاعر کو اس بات پر مجبور کرتے ہوں گے کہ غلام اور غافل قوم کی بیداری کےلیے کوئی نسخہ شفاء پیش کیا جائے ۔ ڈاکٹر رفیع الدین ہاشمی لکھتے ہیں:
”محض اتنی سی بات مثنوی کا محرک نہ تھی ۔ سہ سالہ قیام یورپ، سلطنت
عثمانیہ کا بکھرتا ہوا شیرازہ ، ملت اسلامیہ کا عمومی زوال و انحطاط اور ان سب
کے نتیجے میں وہ ذہنی کرب و اضطراب ، جو کسی حد تک "شکوہ" اور " شمع و...
The Holy Quran is revealed by Allah Almighty to Prophet Muhammad ﷺ over approximately 23 years. Allah Almighty has given the command in the Quran Majeed for people to obey His Messenger. According to Ghulam Ahmad Parwez, the Quran Majeed states that obedience to Allah and His Messenger means obedience to the central authority of the Government named (Markaz e Millt). The Quran provides fundamental principles, such as prayer, fasting, pilgrimage, etc., but the detailed regulations are subject to the discretion of Markaz-e-Millat, who can adapt them according to the contemporary circumstances. Any changes made by the central authority in these regulations are considered legitimate and in accordance with the divine will. This study argues that the obedience to Allah and His Messenger mentioned in the Quran does not refer to obedience to the central authority of the Muslim community, known as "Markaz-e-Millat" (Center of the Community). Numerous Quranic verses warn against disobedience and denial of the Prophet. The Prophet's actions and behavior serve as a complete model for the community, and faith in him is a fundamental requirement of the religion. In conclusion, the idea that obedience to Allah and His Messenger essentially means obedience to the central authority of the Muslim community is an interpretation based on rational understanding but is ultimately unacceptable.
Kyewords: Qu’rān, Interpretation, Ghulām Aḥmad Pervez Markaz-e-Millat, Government
Computer Graphics has a great impact on the existent world in a variety of ways. A variety of applications exist to demonstrate the power of Computer Graphics. Data Visualization is one of them. There is a wide range of applications that are grounded on certain underlying data which is to be exhibited on digital displays. This underlying data has three noteworthy shape patterns named as positive, monotone and convex. This thesis is concerned with the construction of new and effective shape preserving schemes to draw the smooth trigonometric spline curves and surfaces for positive, constrained, monotone and convex shapes of the data. For this persistence, firstly, a quadratic trigonometric spline function with three parameters is developed and it is extended to bi-quadratic trigonometric spline function including six parameters in its description. Two parameters of quadratic trigonometric spline function and four parameters of bi-quadratic trigonometric spline function are constrained to draw the shape preserving trigonometric spline curves and surfaces for positive, constrained, monotone and convex 2D and 3D regular data patterns respectively. Rest of the parameters, one parameter in quadratic trigonometric spline function and two parameters in bi-quadratic trigonometric spline function, are kept free for the shape refinement of shape preserving trigonometric spline curves and surfaces respectively. Furthermore, a cubic trigonometric spline function with two parameters is also developed. One parameter included in its description is constrained to draw the shape preserving trigonometric spline curves for positive, constrained, monotone and convex 2D regular data patterns whereas remaining one parameter is left free for further shape amendment as per requirements. The trigonometric cubic spline function is also extended to bi-cubic trigonometric spline functions which include four parameters in its construction. Two of them are constrained to draw the shape preserving trigonometric spline surfaces for positive, constrained, monotone and convex 3D regular data patterns while the remaining two parameters are left free for further shape modification whenever needed. The proposed and developed schemes are illustrated with examples of 2D and 3D regular data of positive, constrained, monotone and convex shapes. These illustrations help and guide to validate and demonstrate the proposed schemes. The error bounds of developed quadratic trigonometric spline functions and cubic trigonometric spline functions are also estimated which are of order three.