غزل---مبشر سعید،رجسٹراریونیورسٹی آف ساہیوال
کوئی ملتا ہی نہیں سوختہ پا میری طرح
میرے جیون کو اُداسی سے ملانے والا!
میں نے احباب کو آواز لگا کر پوچھا
اے کئی دن سے مرے ذہن پہ چھائے ہوئے شخص
رات بھر چاند کو احوال سنانے کے لیے
زندگی! میری طرف دیکھ کے ایماں سے بتا
تند اور تیز ہواؤں کے علاقے میں سعید
جس کو معلوم ہو وحشت کا پتا میری طرح
دشت میں پھِرتا رہے آبلہ پا میری طرح
کوئی رہتا ہے شبِ غم میں سدا، میری طرح؟
تو مجھے وصل کے سپنے نہ دکھا میری طرح
کیا ٹھہرتی ہے دریچوں میں ہوا، میری طرح؟
ایک بھی شخص کوئی تجھ کو مِلا، میری طرح
زیست کرتا ہے فقط دل کا دِیا میری طرح
Khawājah Obāidullah Multānī’s Mystical Pattern of Preaching in Establishing Peace and Harmony and Its Contemporary Meaningfulness: An Analytical Study A Sufi, literally practically in denotation and connotation is such a figure whose heart is naturally and habitually free of pollution of pride, prejudice, sectarianism, ethnicity, linguicism, and hatred for animate and inanimate things on any ground. This purity of sentiments and sanctity of thoughts of Sufis of Islam have always influenced not only the morality of the Muslims but also attracted the people of anti-Islamic faiths. Human history in general and Islamic history, in particular, is replete with such instances as prove that where logistics and warring tactics of the Muslims failed to produce any positive and healthy effects, these were the unseen swords of Sufis' unmatched conduct and exceedingly supreme love for humanity which bore results of ever-lasting magnitude. Due to the safe and unbiased style of the preaching of Sufis of Islam, foes became friends, twisted pathways became straight high ways of peace and prosperity, the grieved became happy, the downtrodden became the champions and the rejected ones became the accepted ones. Sufis have always been the torchlight and beacon-house equally for the believers and the non-believers. Sufis’ preaching style has been the epitome of the style of Prophet of Islam.
In this thesis, the aim is to present some new classes of non–static and static, spherically symmetric solutions of the Einstein–Maxwell field equations representing compact objects with negative pressure. Throughoutthisthesisthespace–timegeometryisspherical,theradial pressure is negative, and the matter density equals the negative value of the radial pressure (either it is considered or it comes out as a consequence of the calculations). Several non–static solutions are found by taking an ansatz for the components of the metric tensor and on thesquareofelectricfieldintensity. Thesolutionsareshowntosatisfy physical boundary conditions associated with the exact solutions of the Einstein–Maxwell field equations. Due to negative pressure, these solutions can model physical systems such as expanding compact objects containing negative pressure. Petrov and Segr´e classifications that these obtained solutions admit are also discussed in detail. Two staticsolutionsofthefieldequationsarealsoobtainedwiththeansatz similar to that for the non–static cases in order to have a look how the solutions behave for these kind of ansatz in static geometry. All the physicalconditionsareshowntobesatisfiedforthestaticsolutionsand itisshownthatthesesolutionsdescribecompactobjectswithnegative pressure.