Search or add a thesis

Advanced Search (Beta)
Home > Music and Musicians of Sirikot

Music and Musicians of Sirikot

Thesis Info

Author

Samar Minallah

Department

Deptt. of Anthropology, QAU.

Program

MSc

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1990

Thesis Completion Status

Completed

Page

191

Subject

Anthropology

Language

English

Other

Call No: DISS/M.Sc ANT/180

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676718425084

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

میری آواز کو باغی کہہ سکتے ہو تو کہو

میری آواز اقبال کا شاہین
نحمدہ ونصلی علی رسولہ الکریم امّا بعد فاعوذ بااللہ من الشیطن الرجیم
بسم اللہ الرحمن الرحیم
معزز اسا تذہ کرام اور میرے ہم مکتب ساتھیو!
آج مجھے جس موضوع پرلب کشائی کرنی ہے وہ ہے:’’اقبال کا شاہین ‘‘
جنابِ صدر!
علامہ اقبال رحمۃ اللہ علیہ نے اپنے اشعار میں جو لفظ شاہین استعمال کیا ہے، اس سے مراد ان کی صرف ظاہری طور پر نظر آنے والا شاہین نہیں ہے، صرف ایک معروف پرندے کے طور پر ذکر کیا جانے والا شاہین نہیں آسمان کی بلندیوں پر محو پرواز طائرنہیں ہے۔
جناب صدر!
شاہین سے مراد وہ نوجوان نسل لیتے ہیں ، شاہین کی خصوصیات وہ نوجوان نسل میں پیدا کرنا چاہتے ہیں، نوجوان نسل کی اصلاح ہی ان کے لیے تعمیر وطن میں اہم کردار ادا کرسکتی ہے، وہ شاہیں کا ذکر کر کے انسانیت کو ان کا اصل مقام دلانے کی مساعی جمیلہ کرتے ہیں، وہ شاہین کی خصوصیات کے قائل ہیں ، وہ نو جوان نسل کو ارفع مقام پرمتمکن کرنے کے خواہشمند ہیں۔
نہیں تیرا نشیمن قصر سلطانی کے گنبد پر
تو شاہیں ہے بسیرا کر پہاڑوں کی چٹانوں میں
صدرِذی وقار!
اقبال کا حکیمانہ فلسفہ ’’شاہین کے روپ میں ہمیں یہ باور کراتا ہے کہ مسلمان کا مقصد حیات اس سرزمین پر خلافت الہی قائم کرنا ہے، دینِ اسلام کا بول بالا کرنا ہے، اپنے فکروعمل سے سنسار کوگلزار بنانا ہے، بلندی کردار اور پختگی اعمال سے اس جہاں کو امن و آشتی کا گہوارہ بنانا ہے۔ علم و حکمت کی روشن کرنوں سے دنیا پر چھائی گھٹاٹوپ تاریکیوں کو ختم کرنا ہے، اس لیے علامہ اقبالؒ نوجوان نسل سے یہ تمنا اور امید لگائے بیٹھے ہیں کہ وہ شاہین کی طرح اپنی بلند ہمتی، عمل پیہم، جہدِمسلسل، انتھک کوشش سے اپنے اوپر چھائی...

پاکستانی معاشرے میں طلاق کا بڑھتا ہوا رجحان اور اس کے اسباب

Islam wants from its believers to make a peaceful society. The first base of each society is husband-wife relation. Islam has given much emphasis upon this relationship to make it smooth, peaceful, joyful and interactive. But considering human as multidimensional, Islam has allowed husband and wife to get themselves separate from each other, it they cannot survive this relationship smoothly at any level. Though, ‘divorce’ is allowed in Islam but at last solution. Pakistan, as being a Muslim society is facing increase rate in divorce nowadays. My research work is covering different reasons and aspects behind this high ratio of divorce in Pakistan. This research will be helpful to find out any solution to decrease the divorce ration in Pakistani society.

Team learning from demonstration Tlfd : a framework to build collaboration in a team of agents via imitation

This dissertation addresses the problem of building collaboration in a team of autonomous agents and presents imitation learning as an effective mechanism to build this collaboration. Imitation learning involves learning from an expert by observing her demonstrating a task and then mimicking her. This mechanism requires less time and technical expertise on behalf of domain experts/ knowledge engineers and makes it convenient for them to transfer knowledge to a software agent. The research extends the idea of a demonstration to multi-human demonstrations and presents a framework of Team Learning from Demonstration (TLfD) that allows a group of human experts to train a team of agents via demonstrations. A major challenge faced by the research is to cope with the overhead of demonstrations and inconsistencies in human demonstrations. To reduce the demonstration overhead, the dissertation emphasizes on a modular approach and enables the framework to train a team of a large number of agents via smaller numbers of demonstrators. The framework learns the collaborative strategy in the form of weighted naïve Bayes model where the parameters of the model are learned from the demonstration data and its weights are optimized using Artificial Immune Systems. The framework is thoroughly evaluated in the domain of RoboCup Soccer Simulation 3D which is a promising platform for a multi-agent domain and addresses many complex real-world problems. A series of experiments were conducted using RoboCup Soccer in which the agents were trained to perform different types of tasks through TLfD framework. The experiments were started with training a single agent how to score a goal in an empty soccer field. The later experiments increased the complexity of the task and the number of agents involved. The final experiment eventually trained a full-fledged team of nine soccer players and enabled them to play soccer against other competition quality teams. A number of test matches were played against different opponent teams, and the results of the matches were evaluated on the basis of different performance and behavioral metrics. The performance metrics described how well the imitating team played in the field whereas the behavioral metrics assessed how closely they had imitated the human demonstrations. Our soccer simulation 3D team KarachiKoalas served as a benchmark to evaluate the quality of the imitating team, and the dissertation closely compared the two teams and found that the team that was trained via imitation gave comparable performance to KarachiKoalas. The results showed the effectiveness of TLfD framework and supported the idea of using imitation to build collaboration among multiple agents. However, the framework, in its current form, does not support strategy building in an incremental manner in which a naïve strategy is learned via imitation and is refined in stages. The ability to build strategies incrementally can be a crucial requirement in complex systems. In future, the framework can be extended to incorporate the ability to refine an already learned strategy via human expert's feedback