Search or add a thesis

Advanced Search (Beta)
Home > Synthesis Characterization and Reactions of Hexacoordinated Silicon Species

Synthesis Characterization and Reactions of Hexacoordinated Silicon Species

Thesis Info

Author

Samara Latif

Department

Deptt. of Chemistry, QAU.

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1989

Thesis Completion Status

Completed

Page

71

Subject

Chemistry

Language

English

Other

Call No: DISS/M.Phil CHE/138

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676718425465

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

دولتِ دردِ یار مل جائے

دولتِ دردِ یار مل جائے
زندگی کو قرار مل جائے

عشق پابندِ رنگ و ذات نہیں
دل کا جس سے بھی تار مل جائے

وقتِ رخصت ہے اب خدا کے لیے
ہم سے وہ ایک بار مل جائے

اُس کا ملنا خزاں رسیدہ کو
جیسے فصلِ بہار مل جائے

درد مندوں کو رشک ہو تائبؔ
درد یوں بے شمار مل جائے

الاجتهاد في بعض أحكام الربا فهـماً وتنـزيلاً

يهدف البحث إلى تلمس اجتهادات العلماء في فهم بعض آيات وأحاديث الربا، والوقوف على الأحكام التي تقررها النصوص الشرعية في بعض المعاملات المالية، ثم استثمار بعض آليات الاجتهاد التنزيلي والنظر المقاصدي لإناطة الأحكام الشرعية المناسبة بعلل وأوصاف ومعاني بعض أنواع التداول المستجد للأموال. وقد توصل الباحث إلى مجموعة من النتائج أهمها أنَّ فهم النصوص الشرعية عملية ضرورية قبل تصدي المجتهد إلى استنباط الحكم الشرعي، وهي عملية لازمة وسابقة لتنزيل الأحكام على النوازل المستجدة، تتطلب استدعاء آليات للتحقيق والتنزيل لضمان التوفيق في اعتبار مآلات الأفعال في كل نازلة. كما وجد أن التعامل بالربا والانخراط في بعض المعاملات المالية الربوية المستحدثة؛ يفضي إلى أضرار أخلاقية واجتماعية واقتصادية على الفرد والمجتمع الكلمات المفتاحية: الربا، الحكم الشرعي، الاجتهاد، الفهم، التنزيل.

Artificial Immune System Ais -A Soft Computing Based Approach for Electroencephalography Eeg Signal Classification

Human immune system is characterized as a group of cells, molecules and organs which is capable of performing several tasks, like pattern recognition, learning from stored data in memory, detection of diseases and optimize response against diseases. Development of immunological principles inspired computational techniques are being taken up by the researchers. These techniques are being used to solve engineering problems in the field of artificial intelligence. Extensive research has been undertaken to develop and derive algorithms which are inspired by human immune system. These algorithms use computationally intelligent techniques to model the human system and are known as Artificial Immune Systems (AIS). This research focusses on development of a classification system based on Negative Selection Algorithm (NSA) which uses non-invasive brain electroencephalogram (EEG) recorded with the help of electrodes placed on brain motor cortex. Multi-domain features, time domain and frequency domain, were considered to ascertain the classification accuracy. Mel frequency cepstral coefficients (MFCC) are commonly used as features for audio signal and speech identification. In this research use of MFCC for EEG signal classification demonstrated the highest classification accuracy and selected as the best feature for EEG signals under consideration. Dimensionality reduction is an important aspect of data preprocessing for improving the computational complexity. Stacked auto-encoder, with two pre-trained hidden layers, has been used for EEG data dimensionality reduction. The multivariate motor imagery EEG signals have been classified by set of detectors (artificial lymphocytes) which are trained and optimized using Genetic Algorithm (GA). The underlying rule for training is the negative selection algorithm (NSA), which is developed after taking inspiration from human negative selection principle for maturation of lymphocytes inside thymus.These detector sets are trained and optimized for each class of motor movement for detection of non-self pattern based on a threshold and detector radius. The radius of detector is optimized using GA such that it does not mis-classify the sample of EEG signal. Finally, a comprehensive Negative Selection Classification Algorithm (NSCA) is proposed in this research for classification of brain EEG signals. The AIS based NSCA exhibits improved performance of multivariate classification as compared to the recent techniques used by researchers.