خطبات ِ استفہامیہ کے اسرار و حکم و امثال
قرآن مجید میں کثیر آیاتِ مبارکہ ہیں جن میں استفہامیہ اندازِ خطاب اپنایا گیا ہے ۔ چونکہ قرآنِ مجید کا یہ اعجاز ہے کہ اس میں بہت سے اسرار و رموز چھپے ہیں جو کہ گرائمر اور علوم و فنون کے اعتبار سے مختلف ہیں۔ لہذا فصل ہذا میں قرآن مجید سےحروف ِ استفہامیہ اور اسمائے استفہامیہ پر مشتمل آیات کو نقل کیا جائے گا اور تفسیری اسرار و حکم کو بیان کیا جائے گا۔
Since about the middle of the 19th century, numerous attempts have been made by Muslim scholars to interpret the Qur’ān to the modern world. By far the largest output of literature produced in this connection, whether in the form of commentaries, critiques or articles in periodical, has been in Urdu, English and Arabic. But whatever the medium of expression employed, the net result is still is far from satisfactory. Moulana Abul Kalam Azad (1888-1958) was one of the most notable Muslim figures in Sub-continent. The Tarjuman-al-Qur’ān is regarded on all hands as his main contribution to Islamic learning. His original plan was to prepare side by side two companion volumes to this great of his, one entitled Tafsir-al-Bayana affording a detailed commentary of the Qur’ān, the other entitled Muqaddima, to serve as prolegomena to the Tarjuman -al-Qur’ān. The circumstances of his life did not allow him the time that he needed to execute the two projects. Moulana Azad, s thinking and philosophy about commentary of the Qur’ān is very clear: ''Explain the Qur’ān in the manner of the Qur’ān ''. This paper attempts to enlighten many aspects of Moulana Azad, s commentary of Surat-al-Kahaf and explores his contribution and Comparative Analysis for other selected Urdu Tafasir of his era.
If everyfinitesystemofpolynomialequationsoveraring R has asolutioninthe ring R if andonlyifithasasolutionin ˆR where ˆR representsthecompletionof R, then wesaythatthering R has the Artinapproximationproperty. M.Artinsetin a numberofconjectures,thefollowingtheoremsolvedoneofthemwhichsays,“an excellentHenselianlocalringhasthepropertyofArtinapproximation”.General Neron Desingularizationisthebaseoftheproof. Let R and R0 beNoetherianrings,foraspecial(thatisregular)morphism u : R ! R0, any R-morphism '' : S ! R0 with afinitetype R-algebra S, factors through an R-algebra T whichissmooth R-algebra, thatis, '' is acomposite Rmorphism of S ! T and T ! R0. The R-algebra T is calledaGeneralN´eron Desingularization (shortlyGND). In ourthesiswegivetheconstructiveproofofGeneralNeronDesingularization for thecasewhen R and R0 are localringsofdimension m and S has abigsmooth locus,wealsogiveauniformGeneralNeronDesingularizationforlocalringsofdi- mension m along withthealgorithmstoconstructtheN´eronDesingularizationin these cases.Anothercontributionisthat,wegivethenestedstrongArtinapproxi- mation.