Search or add a thesis

Advanced Search (Beta)
Home > Heat Transfer Aspects in Boundary Layer Flow Problems

Heat Transfer Aspects in Boundary Layer Flow Problems

Thesis Info

Author

Sardar Muhammad Bilal

Department

Department of Mathematics, QAU

Program

PhD

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2018

Thesis Completion Status

Completed

Page

126

Subject

Mathematics

Language

English

Other

Call No: DISS / Ph.D / MAT / 1481

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676718528482

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مضامین

تین مسلمان ادبی نوبل انعام یافتہ
احمد سہیل
::: تین مسلمان ادبی نوبل انعام یافتہ فکشن نگار : مصر کے نجیب محفوظ، ترکی کے اورہان پاموک، اورزنجبار( اب تنزانیہ ) کے عبدالرزاق گرنہ:::
1۔ نجیب محفوظ ایک قابل احترام مصری ناول نگار، ڈرامہ نویس، مسودہ نگار اور مصنف تھے جنہیں عربی ادب کے ہم عصر ادیبوں میں شمار کیا جاتا ہے۔ نجیب محفوظ 1988 میں ادب کا نوبل انعام حاصل کرنے والے پہلے عرب مصنف تھے۔ انہوں نے 18 سال کی کم عمری میں لکھنا شروع کیا تھا اور اپنی موت تک اس دلچسپی کو جاری رکھا۔ نجیب محفوظ نے اپنے ادبی کیرئیر کا آغاز مختصر کہانیوں اور جرائد سے کیا تاہم بعد میں انہوں نے ناول لکھنا شروع کیا جس سے انہیں بین الاقوامی سطح پر پہچان ملی۔ ان کی تخلیقات اصل میں عربی میں تھیں اور بعد میں انگریزی، فرانسیسی اور جرمن میں ترجمہ ہوئیں۔ نجیب محفوظ کے زیادہ تر کاموں میں قدیم دور میں مصر میں رائج بادشاہت کے نظام، نوآبادیاتی نظام اور موجودہ مصر کے بارے میں ان کے خیالات پیش کیے گئے۔ یہ بنیادی طور پر سیاسی قیدیوں اور خواتین سے متعلق معاشرتی مسائل سے نمٹتا تھا۔ اس کا دو ٹوک بیانیہ انداز مذہبی گروہوں کی طرف سے شدید غم و غصے کا باعث بنا اور اس کے بعد بعض کاموں پر پابندی لگا دی گئی۔ اپنی زندگی کے دوران، انہوں نے 350 سے زیادہ مختصر کہانیاں، 34 ناول، 5 ڈرامے اور چند مسودے شائع کیے۔
محفوظ کی پیدائش11 دسمبر 1911 میں پرانے قاہرہ میں ایک نچلے متوسط طبقے کے مسلم مصری خاندان میں ہوئی۔ ان کے کمپاؤنڈ کے پہلے حصے کا نام معروف ماہر امراض نسواں، نجیب پاشا محفوظ کی تعریف میں منتخب کیا گیا، جو اس کی مشکل پیدائش کی نگرانی کرتے تھے۔ محفوظ ساتواں اور سب سے چھوٹا بچہ...

سیرت طیبہ کے تناظر میں منصبی ذمے داریاں اور تقاضا ہائے حقوق مصطفی

 Rights of Holy Prophet Muḥammad (P.B.U.H) have been studied from various perspectives. This paper reviewing the extant research on the subject; identifies the duties of government officials from the referred side. It concludes that Prophet Muḥammad (P.B.U.H) is the most benefactor and humanitarian to mankind in the word. In this context only those Govt. Officials can be considered true in their claim of love for Prophet Muḥammad (P.B.U.H) who adhere to his teachings, concerning ability of one’s position, piety, liability, morality and uprightness and those who refrain from being footloose and profligate, and free themselves from the hunger of wealth and status, censoriously evaluate their deeds, keep an eye on the life hereafter and accountability. Moreover, those who hold justice and avoid dishonesty and bias are true according to the teachings of Islam. Without such qualities and characteristics claim of love is just deceit and forgery.

Inverse Problems for Some Fractional Differential Equations

Inverse Problems for Some Fractional Differential Equations Fractional Calculus(FC) is about the investigation of arbitrary order derivatives, integrals, special functions and equations involving these operators. This subject has its roots back to late seventeenth century. In recent years scientists and engineers are using it rigorously as it provides an efficient method to model many well known physical phenomenon when compared with their counterpart (integer order calculus). For example, fractional order diffusion/transport equation has been used to explain anomalies in diffusion/transport process which occurs in many physical situations such as transport in heterogenous or porous media. For a physical process scientists are interested in the investigations of causes and effectsofthatphysicalprocess. Theeffectsofanyphysicalprocess(usuallyknown as direct problems) are easier to study then the causes that forces the system to behave in a particular manner. The mathematical models in which we study the causes are termed as inverse problems(IPs). The field of IPs investigates how to convert measurements into information about a physical process. The field of IPs is of great interest as it has many applications just to mention a few are in medical imaging, acoustic, heat conduction, source identification in a stream, shape optimization etc. In this thesis, we have studied time, space as well as space-time fractional differential equations. Through out our research investigation we have used fractional derivatives defined in the sense of Hilfer and Caputo. It is to be noted that Hilfer fractional derivative (HFD) interpolates both Riemann-Liouville(RLFD) and Caputo fractional derivatives(CFD) for particular choices of parameters. For a fourth order time fractional differential equation(TFDE) with nonlocal boundary conditions(knownasSmaraskii-Ionkinboundaryconditions)involvingHilferfractionalderivative(HFD),twoinversesourceproblems(ISPs)areconsidered. ISPof determining a space dependent source term for a TFDE in two space dimensions is also considered. Existence, uniqueness and stability results for the ISPs are proved under certain regularity conditions on the given data. For a multi-term TFDE involving HFDs ISP of recovering a time dependent source term is studied by using Heaviside-Mikusinski’s operational calculus approach. The spectral problem is non-self-adjoint and a bi-orthogonal system of functions(BSFs) is used toconstructtheseriessolutionoftheISPs. Foraspace-timefractionaldifferential equation(STFDE)withDirichletzeroboundaryconditionsalongwithappropriate over-specified conditions two ISPs of recovering space and time dependent sources are considered. In the last research problem of this thesis inverse coefficient problem(ICP)foraspacefractionaldifferentialequation(SFDE)isstudied. Weproved existence, uniqueness and stability results for the solution of the considered IPs by imposing certain regularity conditions on the given datum.