موضوع9:تحقیق میں مفروضے کی اہمیت
مفروضات:
مفروضات ،مفروضہ کی جمع ہے اسے فرضیہ بھی کہتے ہیں مفروضہ یا فرضیہ کی فن تحقیق کے ماہرین نے مختلف تعریفیں کی ہیں۔سادہ اور پچیدہ مسائل کے لئے فرضیات کا استعمال کیا جاتا ہے۔ ان کے اطلاق کی مثالیں ہمیں روزمرہ معمولات میں ملتی ہیں۔
فرضیہ ایک آزمائشی اور توضیحی بیان ہوتا ہے جو دو یا دو سے زیادہ متغیرات کے تعلق کے بارے میں موجود ہوتا ہے۔ اس تعلق کا تجرباتی طور پر مشاہدہ کیا جا سکتا ہے۔چونکہ فرضیہ تحقیق کا ایک اہم ذہنی آلہ ہوتا ہے ، اس کی حیثیت ایک سائنسی اندازے کی ہوتی ہے جو کسی عملی یا نظری مسئلے سے متعلق متغیرات کے تعلق کے بارے میں قائم کیا جاتا ہے۔سید جمیل احمد رضوی کے بقول:
"روزمرہ زندگی کے معمولات میں رائے(Opinion)کا لفظ کثرت سے استعمال کیا جاتا ہے۔ شروع میں محقق زیرتحقیق مسئلے کے حل کے لیے کوئی ایک رائے یا چند آرا قائم کرلیتا ہے۔ان میں سے ہر ایک کو فرض یہ کے نام سے تعبیر کیا جاتا ہے۔"
ہل وے کے مطابق:
"لغت کے اعتبار سے فرضیہ اس کو کہا جاتا ہے جو نتیجے یا نظریے سے کم یا کم یقینی ہوتا ہے۔ یہ ایک معقول اندازہ ہوتا ہے جس کی بنیاد اس شہادت پر ہوتی ہے جو اندازہ لگانے کے وقت موجود ہوتی ہے۔محقق دوران تحقیق کئی فرضیات بنا سکتا ہے یہاں تک کہ وہ آخر میں ایک ایسا فرضیہ یا لیتا ہے جو زیرتحقیق صورتحال سے بہت زیادہ زیادہ مناسبت رکھتا ہے یا جو تمام معلومات کی توضیح نہایت عمدہ طریقے سے کرتا ہے۔"
ڈاکٹر شین اختر کے بقول:
"مفروضہ اسکالر کو حقائق اور اعداد و شمار کی ایک وسیع و عریض دنیا میں لے آتا ہے ،جہاں اسے اپنے کام کے مواد کا انتخاب کرنا ہے۔یہ مواد ایسا ہوتا ہے...
Background: Nephrotoxicity of ibuprofen is a growing international public health problem in the wake of excessive use of the drug for the treatment of a broad spectrum of diseases in both adults and pediatric patients. Objectives: To present an overview of the protective effect of the green tea on ibuprofen-induced changes in the biochemical markers of the adult rat kidneys. Methods: It is an experimental study conducted in the department of Anatomy, Army Medical College Rawalpindi. The investigation was led on 30 male and non-pregnant female Sprague Dawley rodents of 9-11 weeks old enough and going in weight from 200-330 gm. The animals were divided into three groups consisting of 10 animals each; group A served as control, each animal in group B was given ibuprofen at a dose of 120 mg/kg/day and each animal in group C was given both green tea at a dose of 1ml/100g/day and Ibuprofen 120mg/kg body weight for a period of 9 weeks. Ibuprofen manufactured by Abbot Laboratories (Pvt.) Limited was utilized. Green tea was obtained from local market. Data was collected at the end of experimental period and was analyzed using SPSS version 22. One Way ANOVA was exerted, afterwards by post-hoc Tukey test to find out intergroup differences for quantitative variables. The results were depicted as mean ± standard deviation (mean ± SD). A p value < 0.05 was believed significant. Results: Green tea administration had a significantly favorable effect on serum urea (mg/dl) (Group A=21.9 ± 2.8, Group B=93.2 ± 3.9, Group C=36.4± 3.0; p<0.001) and serum creatinine (mg/dl) (Group A=0.9 ± 0.22, Group B=2.4± 0.52, Group C=0.97 ± 0.3; p<0.001). Conclusions: Green tea had ameliorative effects on the ibuprofen-induced changes in the biochemical markers of the adult rat kidneys.
Sentiment analysis is basically opinion mining or emotion analysis. Many people express their views and sentiments through verbal, non-verbal and written forms to show their opinions and emotions on products, personalities, tourist places, educational institutions, hospitals, historical places, government, restaurants etc. A number of organizations are planning and concentrating on views and opinions of people to get some useful information. The social media, public and private sector organizations websites, web pages, blogs and online surveys are the important sources for getting opinions and reviews of people, thus, word wide web is best source of generating such types of data. Sentiment analysis, review analysis, emotion detection and opinion mining are procedures of analysing the unstructured or structured data for the purpose of evaluation of sentiments and opinions. Sentiments show the scale or level of confidence for positive opinion, negative opinion or neutral opinion or sentiments. Today, sentiments and opinions or reviews evaluation are one of the significant attentions of Natural Languages Processing generally called NLP. Majority of computational linguistics and sentiment analysis etc. software applications are existing for English and some other languages, nonetheless, numerous languages are there which cannot meet the level and category of these types of languages. Though, research studies and tools development processes are in growth for the languages, which are not resourced languages yet. The Sindhi language is an Asian language, which may be called the morphologically rich language, nevertheless, it faces several complexities since evaluating and analysing the online or offline text. Though, lots of data are available online or offline in different forms but yet no appropriate research study or work has discovered in the field of NLP as well as on sentiment analysis for Sindhi language text particularly. The deficiency of development work and research studies as well as technical resources for Sindhi language make the current research work or study interesting and challenging. Viewing and assessing this challenge, we have taken this task to work more to address the problems of Sindhi language data. Therefore, we have focused the construction of text corpus, data set, sentiment analysis system, word tokenization, part of speech tagging as well as subjective lexicon assessment for Sindhi language text. Supporting tools such as Sindhi POS tagger helps in identifying sentiments from Sindhi text corpus. This study has developed the NLP resources including sentiment analysis resources for Sindhi language text. Separate text corpus and linguistic data sets are developed and analysed by machine learning and deep learning models. Machine learning models are trained with small sentiment-based Sindhi training data and large sentiment-based Sindhi training data. The results confirm the proper performance and execution of supervised machine learning models in form of extraction of appropriate sentiments. The sentiment analysis for Sindhi text is done on document-level sentiment analysis, product level and aspect level sentiment analysis. The leaning model is designed and developed for the purpose of sentiment evaluation and analysis for Sindhi language text. Neural network based LSTM model is used with multiple layers to evaluate and validate the sentiment based Sindhi language text and products feature based data set. Results of models confirm the significance of methodology by showing good sentiment analysis and opinion analysis on Sindhi language text. Research study contributes the Sindhi language plain text corpus, linguistics dataset, aspect-based sentiment analysis dataset to the fields of natural languages processing as well as computational linguistics. Sentiment analysis system, which is developed for the Sindhi text is significant and state-ofthe art work. The work places the Sindhi language for international research to explore the grammatical and morphological complexities, perform the information retrieving, language modelling, semantic and sentiment analysis, universal dependencies and unsupervised modelling for text analysis etc.