Search or add a thesis

Advanced Search (Beta)
Home > Heat Transfer Around a Sharp Corner in Extended Surfaces

Heat Transfer Around a Sharp Corner in Extended Surfaces

Thesis Info

Author

Shahla Gul

Department

Deptt. of Mathematics, QAU.

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2008

Thesis Completion Status

Completed

Page

64

Subject

Mathematics

Language

English

Other

Call No: DISS/M.Phil MAT/649

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676718679331

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

دنیا دی حقیقت

دنیا دی حقیقت
حسن جوانی دا اے روپ نہیوں رہنا
ہک دن آسی، توں ہے دکھاں وچ پینا

کرسی وفا تیرے نال نہ جوانی
ٹر جاوے ہک واری پھر ناں ایہہ آنی
ایہہ تیری مغروری ساری ٹٹ جانی
پانی والی لہر وانگوں زندگی نے وہنا
حسن جوانی دا اے روپ نہیوں رہنا

ماں تیری ہر گل کردی ہے پوری
ہتھاں نال ٹورے تینوں اوہدی مجبوری
ہک دن چھڈنا جہان اے ضروری
نیکیاں دا پا لَے توں گل وچ گہنا
حسن جوانی دا اے روپ نہیوں رہنا

نخرے نیں چار دن فیر پچھتانا
حسن گیا تے گیا سب یارانا
عشق حقیقی نے ای ساتھ نبھانا
قادریؔ سائیں دا توں من لَے کہنا
حسن جوانی دا اے روپ نہیوں رہنا

چڑھدی جوانی بڑا شور ہے مچایا
چوڑیاں تے جھانجھراں نے دل بہلایا
حسن دے پچاریاں نوں بڑا توں ستایا
روپ والے بت تیرے ہک دن ڈھہنا
حسن جوانی دا اے روپ نہیوں رہنا

قادریؔ ایہہ محفلاں نہ ایہہ ویلے آنے
نویں ایتھے آ گئے ، پرانے ٹر جانے
اگے والی سوچ، گل کہندے نیں سیانے
سدا نہیوں جوبنے تے ایہہ رنگ رہنا
حسن جوانی دا اے روپ نہیوں رہنا

Inovasi Pendidikan Islam pada Masa yang Akan Datang: Penggabungan Madrasah dan Sekolah Pilihan

Pendidikan Islam menjadi pilihan masa depan, dan menjadi rujukan dalam mengembangkan potensi peserta didik dan embrio peradaban dunia, kemajuan peradaban Islam lahir dari pendidikan Islam yang berkualitas. Oleh karena itu, pendidikan agama Islam harus dikelola secara profesional, berbasis saintek dan berkualitas. Sistem pendidikan Islam mendesak untuk direformulasi sesuai dengan dinamika zaman, kebutuhan pasar, dan berbasis kearifan lokal, sehingga melahirkan ulama dan cendekiawan saintis yang unggul. Metodologi yang digunakan dalam penelitian ini adalah penelitian kualitatif, penelitian ini mengambil lokasi di Kota Pekanbaru, dengan sampel SMUN 10 dan MAN 3. Hasil penelitian ini adalah integrasi sistem pendidikan, baik sistem pendidikan sekolah unggulan maupun sistem pendidikan Madrasah, relevan dilakukan sebagai upaya mencari model pendidikan Islam yang ideal dan riil di era globalisasi.  

Optical Character Recognition for Printed Urdu Nastaliq Font

Optical Character Recognition (OCR) is one of the most investigated pattern classification problems that has received remarkable research attention for more than half a century. From the simplest systems recognizing isolated digits to end-to-end recognition systems, applications of OCRs vary from postal mail sorting to reading systems in scene images facilitating autonomous navigation or assisting the visually impaired. Despite tremendous research endeavors and availability of commercial recognition engines for many scripts, recognition of cursive scripts still remains an open and challenging research problem mainly due to the complexity of script, segmentation issues and large number of classes to recognize. Among these, Urdu makes the subject of our study. More specifically, this study investigates the recognition of printed Urdu text in Nastaliq style, the most widely employed script for Urdu text that is more complex than the Naskh style of Arabic. This work presents a holistic (segmentation-free) technique that exploits ligatures (partial words) as units of recognition. Urdu has a total of more than 26,000 unique ligatures, many of the ligatures, however, share the same main body (primary ligature) and differ only in the number and position of dots and diacritics (secondary ligatures). We exploit this idea to separately recognize the primary and secondary ligatures and later re-associate the two to recognize the complete ligature. Recognition is carried out using two techniques; the first of these is based on hand-crafted statistical features using hidden Markov models (HMMs). Features extracted using sliding windows are used to train a separate model for each ligature class. Feature sequences of the query ligature are fed to all the models and recognition is carried out through the model that reports the maximum probability. The second technique employs Convolutional Neural Networks (CNNs) to automatically extract useful feature representations from the classes and recognize the ligatures. We investigated the performance of a number of pre-trained networks using transfer learning techniques and trained our own set of networks from scratch as well. Experimental study of the system is carried out on two benchmark datasets of Urdu text, the ‘Urdu Printed Text Images’ (UPTI) database and the ‘Center of Language Engineering’ (CLE) database. A number of experimental scenarios are considered for system evaluation and the realized recognition rates are compared with state-of-the-art recognition systems for printed Urdu text. An interesting aspect of experimental study is the combination of unique ligatures in the two datasets to generate a large set of around 2800 unique primary and secondary ligatures covering a major proportion of the Urdu corpus. The system reports high classification rates (88.10% and 94.78% on CLE and UPTI query ligatures respectively) demonstrating the effectiveness of the proposed recognition techniques which can be adapted for other cursive scripts as well. The findings of this study are expected to be useful for the document recognition community in general and researchers targeting cursive scripts in particular.