مولانا آزاد سبحانی
افسوس ہے پچھلے دنوں مولانا آزاد سبحانی کا۷۵ برس کی عمر میں گورکھ پور میں انتقال ہوگیا۔مرحوم کااصل نام عبدالقادر اوروطن سکندر پور ضلع بَلیاتھا۔ادھر ایک مدت سے گمنامی کی زندگی بسر کررہے تھے۔ورنہ تحریکِ خلافت کے زمانہ میں پورے ہندوستان میں ان کی شہرت کاطوطی بولتا تھا۔فلسفہ والٰہیات کے فاضل تھے۔ خطابت وتقریرمیں بعض حیثیتوں سے اپنا جواب نہیں رکھتے تھے۔ شاعر بھی تھے۔مرحوم کی ایک غزل بچپن میں کبھی پڑھی تھی جواب تک یاد ہے:
پیام آیا ہے پیمانِ جفا کا
یجہ کھل گیا جوشِ وفا کا
نِکل آؤ ذرا پردہ سے باہر
عقیدہ مٹ رہا ہے اب خدا کا
مزاجِ لااُبالی اور جوانی
خدا حافظ ہے ناموسِ حیا کا
خدا پر چھوڑ دو انجامِ کشتی
قدم کیوں درمیاں ہو ناخدا کا
حدیثِ ضبط پروانہ ہے بے وقت
زمانہ ہے فغانِ برمَلا کا
ترا آزادؔ پھر پابندِ غم ہے
ہ پھر محتاج ہے لطف و عطا کا
لیکن افسوس ہے اپنی صلاحیتوں اورکمالات سے اسلام اور مسلمانوں کو جو فائدہ پہنچا سکتے تھے اپنی طبیعت کے عدم استقلال اور تلون کی وجہ سے نہ پہنچا سکے۔ بحیثیت مجموعی بڑی خوبیوں کے انسان تھے۔الّٰلھم اغفرلہ وارحمہ ۔
[اگست ۱۹۵۷ء]
During these troubled times fallacious notions are being deliberately and repeatedly spread throughout the world by many biased, ill-informed and even mischievous persons regarding Islam and Holy Prophet Mohammad(SAW). Those writers have tried to damage the graceful and towering personality of Mohammad(SAW) in the eyes of the world. Thus, Islam is under the pressure of media, politicians, and even financial world donor institutions. The result of all this propaganda is that Muslims are considered a threat to Western way of life. Muslims are portrayed as fanatics, fundamentalists and terrorists. This article presents the Islamic view about interfaith dialogue especially in the light of the Quranic verses and Hadith of Prophet (SAW). Certain events from the life of the Prophet (SAW) have also been quoted when the Prophet Muhammad (SAW) held interfaith dialogue with the rulers, envoys and other factions. These incidents include different strategies of the prophet (SAW) calling DAWA and preaching for interfaith dialogue. At the same time Prophet (SAW) presented Islam as a religion of harmony and peace.
Facial expressions deliver intensive information about human emotions and the most valuable way of social collaborations, despite difference in ethnicity, culture, and geography. These differences addresses the three main problems, which are; facial appearance variation, facial structure variation, and inter-expression resemblance. Due to these problems the existing facial expression recognition techniques are very inconsistent. This study presents several computational algorithms to handle these problems in order to get high expression recognition accuracy. We proposed a novel ensemble classifier for cross-cultural facial expression recognition. The proposed ensemble classifier consists of three stages; base-level, meta-level and predictor, where binary neural network adopted as base-level classifier, neural network ensemble (NNE) collections as meta-level classifier and naive Bayes (NB) with Bernoulli distribution as predictor. The NB classifier takes the binary output of NNE collections and classifies the sample image as one of the possible facial expressions. The Viola-Jones algorithm is used to detect the face and expression concentration region. The acted still images of three databases JAFFE, TFEID, and RadBoud originate from four different cultures are combined to form multi-culture facial expression dataset. Three different feature extraction techniques LBP, ULBP and PCA are applied for facial feature representation. Further, boosted NNE collections are developed to enhance the facial expression recognition accuracy. The proposed boosting technique combines multiple NNEs which are complement to each other. The combination of boosted NNE collections with HOG-PCA feature vector perform significantly better than NNE collections. Later on the multi-culture dataset is extended by adding more cultural diversity from KDEF and CK+ databases, which is used to train the SVM based ensemble collections. The introduction of SVM ensemble collections at meta-level provides strong generalization ability to learn the vast variety of cultural variations in expression representation. Moreover, sensitivity analysis and inter-expression resemblance analysis are performed to quantify the level of complexity in cross-cultural facial expression recognition. It shows that expressions of happiness, surprise and anger are easy to recognize as compare to expressions of sadness and fear. It proves that these expressions are innate and universal across all cultures with minor variations. The experimental results demonstrate that proposed cross-cultural facial expression recognition techniques perform significantly better than state of the art techniques.