Search or add a thesis

Advanced Search (Beta)
Home > The Boundary Layer Equations in Non-Newtonian Fluids

The Boundary Layer Equations in Non-Newtonian Fluids

Thesis Info

Author

Suleman Khan

Department

Deptt. of Mathematics, QAU.

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1999

Thesis Completion Status

Completed

Page

59

Subject

Mathematics

Language

English

Other

Call No: DISS/M.Phil MAT/321

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676718916078

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

تدوین کی اسلامی روایت

موضوع3:تدوین کی اسلامی روایت
اسلام سے قبل اہل عرب کی حالت:
اہل علم اس بات سے آگاہ ہیں کہ اسلام کے اعلان و ترویج سے قبل عرب کا خطہ لکھائی پڑھائی سے محروم تھا۔ ہزاروں کی آبادی میں گنتی کے چند افراد لکھ پڑھ سکتے تھے۔ اہل عرب اس دور میں کسی بھی مہذب معاشرے میں شمار نہ ہوتے تھے۔ ایسے حالات میں اللہ کے رسول حضرت محمد ? نے نزول وحی کے آغاز کے بعد اسلام کا اعلان فرمایا۔
اعلان نبوت :
ابتدائی 13 سال تک انتہائی شدید مخالفت کے عالم میں صرف زبانی تعلیم کا سلسلہ ہوتا تھا۔ صحابہ کرام جو کچھ سنتے وہ یاد کر لیتے۔ اپنے حافظے میں رقم کر لیتے۔عربوں کے حافظے نہایت قوی تھے۔ مگر ساتھ ہی جو صحابہ کرام لکھنا پڑھنا جانتے تھے وہ قرآنی آیات لکھتے بھی تھے۔مگر پڑھائی لکھائی کا باقاعدہ نظام نہیں تھا۔ 13 سن نبوی ? میں ہجرت کے بعد حالات معمول پر آئے۔ میثاق مدینہ اور مواخات مدینہ کے بعد مسجد نبوی ?کی تعمیر بھی ہو چکی تو مسلمان کچھ سکون میں آئے۔ ان حالات میں تعلیم کا انتظام شروع ہوا۔
تعلیم و تربیت کا باقاعدہ آغاز:
تقریبا سواسال گزرنے کے بعد غزوہ بدر وہ تاریخی واقعہ ہے جب مسلمانوں پر کفار نے حملہ آور ہونے کی کوشش کی۔ تو اللہ تعالی نے مسلمانوں کو فتح سے ہمکنار کیا۔یہ وہ موقع تھا جب نبی رحمت ? نے مسلمانوں کو مزید رغبت سے تعلیم پر مائل کرنے کے لئے کفار قیدیوں کو فدیے میں مسلمانوں کی تعلیم کاحکم دیا۔اس کے بعد مسجد نبوی ? میں ایک چبوترہ تھا جسے دنیا میں صفہ کے نام سے یاد کیا جاتا ہے۔ نامساعد مالی حالات میں صحابہ کرام کی کثیر جماعت اس چبوترے پر تعلیم حاصل کرتی۔ کتب میں وارد روایات کے مطابق مختلف اوقات میں 1000 یا اس...

ڈاکٹر اسرار احمد: بیسویں صدی کا عظیم مدرس و داعی قرآن

Dr. Israr Ahmed was a great thinker, intellectual and a reformer. He was diverse scholar and took inspiration from a great and diverse spectrum of sholars like Dr. Allama Iqbal and Dr. Rafiuddin; Abul Aa’la Maoudoodi and Abul Kalam Azad; Hameed uddin Farahi and Amin Ahsan Islahi and Sheikh ul Hind Maulana Mahmood ul Hasan and Shiekh ul Islam Maulana Shabbir Ahmed Usmani. His thought and wisdom was quite influenced by these people. We trace out this remarkable and renowned sholar’s rendered his educational, authorial and religious services. For this purpose Dr. Israr Ahmed started his mission with lecture of Quran. Soon, his lectures were well known throughout the country. He established a great institute namely ‘Markazi Anjuman e Khudaam ul Quran’ in Lahore in order to render educational, authorial and religious services in an organized manner. To spread reformative and preaching services in a better way, he established a party with the name of ‘Tanzeem e Islam Pakistan’In view of his great services, especially in the field of Holy Quran, we may mark him as great scholar of twentieth centur

Improved Bootstrap Methods for Time Series Models.

The bootstrap methods are used extensively in statistical analysis of econometric and time series models. In small sample situations, where the asymptotic theory does not work well to approximate the unknown sampling distribution of a statistic, bootstrap methods are used as an alternative. The idea is that the observed sample contains useful information about the population characteristics and resampling from it can give a good approximation to the sampling distribution. Therefore, bootstrap approximations can provide better small sample performance than those obtained from asymptotic theory. The main focus of the present work is the application of bootstrap methods to time series models. The current study has three dimensions. The first part is concerned with the construction of bootstrap prediction intervals for autoregressive fractionally integrated moving-average processes which is a special class of long memory time series. For linear short-range dependent time series, the bootstrap based prediction interval is a good nonparametric alternative to those constructed under parameter assumptions. In the long memory case, we use AR-sieve bootstrap which approximates the data generating process of a given long memory time series by a finite order autoregressive process and resample the residuals. For the construction of prediction intervals, we applied two sieve bootstrap algorithms. A simulation study is conducted to examine and compare the performance of these AR-sieve bootstrap procedures. We use four different values of the long memory parameter d.For the purpose of illustration a real data example is also presented. In second part of this work, we propose two bootstrap procedures to construct prediction intervals for ARFIMA-GARCH models. The first method is based on the model based bootstrap, in which the order of the model is assumed to be known. The second bootstrap method is based on the idea of approximating the ARFIMA part by an AR model. In modeling the ARFIMA-GARCH model, the first step is to determine the order of ARFIMA part. Determination of the order of ARFIMA model is a complicated task. To simplify the model building procedure, we approximate the ARFIMA part of the ARFIMA-GARCH model by an AR(p) model and fit an AR-GARCH model instead of ARFIMA-GARCH model. The third part of this thesis is based on testing goodness-of-fit in Autoregressive fractionally integrated moving-average models with conditional hetroscedasticity. We extend the applicability of Hong’s and power transformed Hong’s test statistics as goodness-of-fit tests in ARFIMA-GARCH models where the structural form of GARCH model is unknown. Simulation study is performed to assess the size and power performance of both tests.