Search or add a thesis

Advanced Search (Beta)
Home > Attachment Styles and its Relation With Perception of Bullying in School Children

Attachment Styles and its Relation With Perception of Bullying in School Children

Thesis Info

Author

Tayyba Yaseen

Department

National Institute of Psychology, QAU.

Program

MSc

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2006

Thesis Completion Status

Completed

Page

iv,48

Subject

Psychology

Language

English

Other

Call No: DISS/M.Sc PSY/346

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676719144627

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اسلم ملک

                اسلم ملک (۱۹۳۱ء پ) سیالکوٹ کے محلہ دھارو وال میں پیدا ہوئے ۔(۱۰۴۱) نثر نگاری ان کی پہچان ہے لیکن اظہار کے لیے انھوں نے شاعری کا لطیف پیرایہ بھی استعمال کیا ہے۔ اسلم ملک نے بچوں کے ادب کو زیادہ اہمیت دی ہے۔ اس لیے ان کی شاعری کا بڑا حصہ بچوں کی شاعری پر محیط ہے۔اسلم ملک نے حمد سے نعت ،غزل نظم اور ہائیکو جیسی اصناف میں طبع آزمائی کی ہے۔ اسلم ملک کا شعری مجموعہ ’’خواب اور خوشبو‘‘شائع ہو چکاہے۔ تصوف اور عشقِ حقیقی اسلم ملک کی شاعری کا ایک بڑا موضوع ہے۔ اسلم ملک کے نزدیک صرف خدائے رحیم و کریم ،تعظیم ،عظمت اور تمہیدو ستائش کا حقدار ہے۔ لالہ و گل میں اس کی خوشبو ہے۔ اور سورج چاند ستاروں کی روشنی بھی اسی سے ہے کیونکہ وہ نور اور نور کا منبع ہے:

لالہ و گل میں جو خوشبو ہے فقط تری ہے

 

چاند ستاروں کی چمک میں بھی ہے فیضان تیرا

 

گیت تیرے ہی سناتے ہیں پرندے سارے

 

بزمِ قیمتی کا ہر اک فرد ثنا خواں تیرا

 

â۱۰۴۲)

>             اﷲ تعالیٰ ہی کل کائنات کا خالق و مالک ہے۔ یہ ساری خلقت اس کا کنبہ ہے۔ وہ ساری مخلوقات کا پروردگار ہے۔ عرش و فرش اس کے جلال سے بھرپور اور معمور ہے۔ وہ بنی نوع انسان کے ہر درد کا درماں اور ہر مشکل میں عقدہ کشا ہے۔ اسلم ملک اپنی ایک حمدیہ نظم میں انھی خیالات کا اظہار اس طرح سے کرتے ہیں:

تو خالق و مالک ارض و سما

 

1سبحان اﷲ ، سبحان...

قانون اسلامی میں تعزیر کے جواز اور اس کے طرق تنفیذ کا تحقیقی جائزہ

This article investigates the notion of ta’z┘r (discretionary punishments in Islamic law) by comparing and contrasting it with the concept of hadd (fixed punishments in Islamic law). Deterrence of crimes is the main objective of any legal system in the world and different punishments are prescribed for this very purpose by all legal systems. Hence, this article explains the meaning and definition of ta’z┘r first, followed by the basis of its permissibility in the Quran and Sunnah, its types and modes of implementation etc. The article also elaborates the extent of ta’z┘r in different cases and crimes. The permissibility of pardoning in ta’z┘r as against hadd is also explained while the article concludes with presenting the main findings of the study.

Modeling Spatiotemporal Regularity in Deformable Structures

A variety of dynamic objects, such as faces, bodies, and cloth, are represented in computer vision and computer graphics as a collection of moving spatial landmarks. A number of tasks are performed on this type of data such as character animation, motion editing, and nonrigid structure from motion. In theory, many of these tasks are highly under-constrained and the estimation algorithms exploit the natural regularity that exists as a cloud of points moves over time. In this thesis, we present compact and generalizable models of non- rigid objects by exploiting spatial and temporal regularities of time-varying point data. We demonstrate that several theoretically ill-posed tasks can be made well-posed with the help of these models. Our first contribution is to propose and demonstrate the effectiveness of the linear trajectory model for representing time-varying point clouds. Traditionally, a linear shape model has been used to represent time-varying point data; the 3D shape of a nonrigid object is modeled as a linear combination of a small number of basis shapes. In contrast, we represent point trajectories as a linear combination of basis trajectories. We show that the linear trajectory and the linear shape models are dual to each other and have equal representation power. In contrast to the shape basis, however, we demonstrate that the trajectory basis can be predefined by exploiting the inherent smoothness of trajectories. In fact, we show that the Discrete Cosine Transform (DCT) is a good choice for a predefined basis and empirically demonstrate its compactness by showing that it approaches Principal Component Analysis (PCA) for natural motions. This linear trajectory model is applied to the problem of nonrigid structure from motion. Analogous to the formulation under the shape model, the estimation of nonrigid struc- ture from motion under the trajectory model results in an optimization problem based on orthonormality constraints. Prior work asserted that structure recovery through orthonor- mality constraints alone is inherently ambiguous and cannot result in a unique solution. This assertion was accepted as a conventional wisdom and was the justification of several remedial heuristics in literature. In contrast, we prove that orthonormality constraints are, in fact, sufficient to recover the 3D structure in both the linear trajectory and the shape models. Moreover, we show that the primary advantage of the trajectory model over the shape model in nonrigid structure from motion is the possibility of predefining the basis.This results in a significant reduction in unknowns and corresponding stability in estima- tion. We demonstrate significant improvement in reconstruction results over the state of the art. After demonstrating the effectiveness of the linear trajectory model over linear shape model in nonrigid structure from motion, we also show how both the models can be synergisti- cally combined. We present the bilinear spatiotemporal basis as a model to simultaneously exploit spatial and temporal regularities, while maintaining the ability to generalize well to new sequences. The model can be interpreted as representing the data as a linear com- bination of spatiotemporal sequences consisting of shape modes oscillating over time at key frequencies. We apply the model to natural spatiotemporal phenomena, including face, body, and cloth motion data, and demonstrate its effectiveness in terms of compaction, gen- eralization ability, predictive precision, and efficiency against existing models. We demon- strate the application of the model in motion capture clean-up. We present an expectation- maximization algorithm for motion capture labeling, gap-filling, and denoising. The solu- tion provides drastic reduction in the clean-up time in comparison to the current industry standards.