Search or add a thesis

Advanced Search (Beta)
Home > Directed Spontaneous Emission

Directed Spontaneous Emission

Thesis Info

Author

Tufail Ahmad

Department

Deptt. of Physics, QAU.

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2008

Thesis Completion Status

Completed

Page

vii,67

Subject

Physics

Language

English

Other

Call No: DISS/M.Phil PHY/780

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676719173443

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

۔مراتب اختر کی غزل گوئی

مراتب اختر کی غزل گوئی

                ساٹھ کی دہائی میں شہرت حاصل کرنے والے شعراء میں ایک اہم نام مراتب اختر کا بھی ہے۔ مراتب اختر منفرد لہجے کے جدید شاعر تھے۔ جنھوں نے غزل میں نئے نئے تجربات کیے۔ یہ ایک حقیقت ہے کہ شاعری کی اساس اسلوب ہے اور اسلوب کی خوبصورتی الفاظ کے انتخاب کی مرہونِ منت ہے۔ لفظوں کا خوبصورت انتخاب کلام میں آہنگ اور موسیقیت پیدا کرتا ہے اور الفاظ کی لطافت، فصاحت اور موزونیت ایک دوسرے کے ساتھ تقابل کے بعد واضح ہوتی ہے۔ مراتب اختر اُردو غزل میں جدیدیت کے علم برداروں میں اہم مقام رکھتے ہیں اور اُن کا اسلوب اس کا آئینہ دار ہے۔ انھوں نے اپنے کلام میں جدیدلفظیات کو استعمال کر کے جدید غزل کو ایک نیا رنگ دیا۔ مراتب اختر کی شاعری کے حوالے سے معروف شاعر اور نقاد افتخارجالبؔ لکھتے ہیں:

مراتب اختر نے جو شاعری کی ہے۔ اس میں رکھ رکھائو، ڈِکش کی ملائمت، نفاست اور مروّجہ شعریت نہیں ہے۔ سب کچھ اُکھڑا اُکھڑا دکھائی دیتا ہے۔ یہ خرابیاں کہ امکان سے نابلد، اندھے اور بے مغز لوگوںں کو گراں گزرتی ہیں۔ درحقیقت مراتب اختر کی خالص خوبیاں ہیں۔(۱)

                مراتب اختر شاعری کے میدان میں لکیر کے فقیر ثابت نہ ہوئے بلکہ انھوں نے عرصہ دراز سے استعمال ہونے والے سادہ الفاظ کو اس نئے رنگ سے اپنی شاعری میں استعمال کیا کہ وہ اُن کی پہچان بن گئے۔ مراتب اختر کے حوالے سے وحید اطہر اپنے مضمون ’’مراتب اختر اور ہم‘‘ میں یوں رقم طراز ہیں:

مراتب اختر کے ہاں گل و بلبل کی شاعری نہیں ہے۔وہ زمانے کے ساتھ ساتھ رہا۔ اس نے دیومالائی قصے کہانیوں کا سہارا نہیں لیا۔ وہ جیتے...

حد الزاني البكر و المحصن

Islam is a complete code of life and it provides complete guidance in every field of life. Islamic law provides protection to the human wisdom, race and respect. Spiritual purity, sacred heart and environmental cleanliness, is one of the important persistence of Islamic sharia. Every act which leads us towards ignorance, contradiction, ambiguity and vulgarity is prohibiting in human societies. Zina has destroyed the spiritual values of individuals, families, societies and even nations. This ruthless deed is not only prohibited and sentenced in Islam, but also rather detested by other heavenly religions as well. Without discrimination of any religion, many scholars considered this hated act as the source of unrest and anarchy. Physically, ethically, medically, socially and even religiously zina has infinite hindrances in the society. Islam has provided various teachings and precautions to shun from this major sin for the protection of greatness and superiority of humanity. One of the important teachings is punishment for committing this sin, which is known as “Hadd” in Islamic sharia. In the current book, the punishments of married and unmarried (Fornicator) zani have been described in the light of Sunnah and Quran. The important purpose of Qisas and Hadd is the correction of societies, protection of life, respect and wealth, not the humiliation of people. To punish the criminals is the source of rectification for others.

Adaptive Wavelet Thresholding for Non- Homogeneous Noise Reduction in Mr Magnetic Resonance Images

Noise suppression in MR (Magnetic Resonance) images is a critical task; conventional signal processing techniques are not always suitable as spatial resolution may lose during noise suppression process. Therefore noise suppression ought to be performed in a manner so as to preserve the actual pattern of the image. Non-homogeneous noise is one of the challenges faced in image processing. This thesis work; specifically focuses on non-homogeneous noise suppression method for MR images. Wavelet Analysis has widely been used for image processing including image de-noising, edge detection and segmentation. The existing wavelet de-noising methods are focused on homogeneous noise removal, using same threshold for entire image. If the image contains different burst of random noise, these conventional methods are not sufficient for effective noise removal. The quality of the post-processed image is further affected if these noise patterns cover hard to find malignant areas, which possibly increases the false alarm for diagnostic imaging. In order to improve the early detection of possible malignant areas, the quality of the post-processed image requires effective de-noising techniques, which can be adapted with the nature of noise burst. The fuzzy rule based wavelet thresholding method has been explored in this research for effective noise removal from an image with an array of complexities. In order to develop a robust system closer to real image with non-homogeneous noise, a complex range of noise patterns have been incorporated in MR images. The initial phase of the dissertation work involves the synthesis of non-homogeneous noise on various MR images. Real MR images without noise burst were used as a benchmark. The de- noised images are compared with their clean counterparts for measuring the effectiveness of the technique. A novel image synthesis process has been developed for analyzing the image de- noising and segmentation. Some of the images contain various sizes of malignant patterns for full scale analysis of image de-noising and fuzzy image segmentation. The main focus of the analysis is the brain image, as it requires rigorous image assessments for an effective classification and detection of patterns. The second phase of the dissertation work expounds the wavelet thresholding for various sets of images. An in-depth investigation of fuzzy rule based optimizer for adapting the wavelet threshold for effective noise suppression has been examined. In this technique, the threshold is further optimized, based on number of criterion including; the intensity, location and size of the noise burst over the malignant patterns. Therefore the present technique improves the post processing diagnostic of images containing small pattern(s) hidden under noise bursts, which otherwise goes undetected. The third phase of the dissertation work studies the impact of non-homogeneous noise on the performance of fuzzy image clustering algorithm. Various results were analyzed for clean, noisy and de-noised images. The purpose here is to segment the malignant areas of noisy brain MRI for effective tumor detection. Fuzzy rule based optimizer plays an important role for adapting the wavelet threshold for the region of interest. The fuzzy information of image contours and noise burst transformed into crisp control decision signals for adapting the threshold. In addition, it was found that the noisy image with no tumor has a false possibility of detecting benign pattern as malignant area. Other research outcome includes the detection of patterns in an image with invisible noise bursts using Multi-resolution Analysis. The result of this course of action is obtained in the diagonal detail components of multi-level decomposition. The difficulties observed in the prevailing methodology include the limited set of research studies conducted to address the issue of non-homogeneous noise in MR Images and the limited accessibility of real images. A good source of validation is the comparison of the de- noised image with that of clean image. Impact of non-homogeneous noise has been explored using directional wavelet. This analysis demonstrates how adversely, different noise patterns affect the computational performance of curvelets and ridglet. The main outcomes of this technique include the impact of non- homogeneous noise on wavelet and curvelet based de-noising methods. An important attribute of this research, is improved methodology for malignant patterns detection in noisy MR Images. This, in turn, makes possible the better development of image diagnostic tools.