Search or add a thesis

Advanced Search (Beta)
Home > Open Chat Location Based Chatting Application

Open Chat Location Based Chatting Application

Thesis Info

Author

Muhammad Umer Shahid

Supervisor

Adeel Anjum

Department

Department of Computer Science

Program

BCS

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Subject

Computer Science

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720004929

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

کاغان وادی دا اتہاس

کاغان وادی دا اتہاس

                ہزارہ دا اتہاس بہوں پرانا اے ۔ایتھوں دے وسوں دا اسمبھندھ پتھر دو رنال جا رلدا اے ۔ ایس دا پرانا ناں ’’عروسہ ‘‘اے جس توں اکھر’’ اورش ‘‘بنیا اے ۔ہندوستانی تاریخ مہا بھارت 301ء قبل مسیح وچ ایس داناں ’اراگا ‘‘''URAGA''ؒلکھیا ہویا اے ۔جس دے ارتھ جھیل دے ہن (۱)321ء ق م وچ ایس دا الحاق ٹیکسلا نال ہویا تے 326ق م وچ سکند ر اعظم نے ایس علاقے تے حملہ کیتا تے فتح کر کے ایس نوں پونچھ دے راجا ابھیسار دے حوالے کر دتا تے(2) ایس علاقے نوں ’’ابھسیار‘‘آکھیا جاون لگ پیا ۔329(3)ق م وچ ایس علاقے تے موریہ خاندان دا قبضہ ہو یا تے چندر گپت موریہ دے راج وچ ’’سنئہ گپتا ‘‘دا آغاز ہو یا ۔چند گپت دے مگروں ہند وسر راجہ بنیا تے بندو سر دی موت پچھوں اشوک اعظم راج گدی اتے بیٹھیا ۔اوس سمے ٹیکسلا ایس علاقے دی راج دھانی سی ۔اشوک اعظم نے اپنے حکم پتھراں اتے لکھوائے جو اج وی مانسہرہ دے بٹ پل تے بریٹری علاقے وچ ویکھے جا سکدے نیں ۔ہندو بریٹری پہاڑی اتے شیوا دی پوجا لئی جاندے سن (4)اشوک دے مگروں سیتھین نے ایس علاقے اتے راج کیتا تے ایہناں توں پچھوں ساکا خاندان دی حکومت قائم ہوئی ۔

                484ء وچ راجہ رسالو نے ہزارہ اتے قبضہ کیتا ۔راجہ رسالو راجہ سالباسن دا پتر سی تے ساکا خاندان نال تعلق رکھدا سی (5)اوہ شکار کرن ہزارہ آندا رہندا سی ۔ایہہ اوس ویلے ٹیکسلا راج دا حصہ سی ۔سری کپ نے اک وار راجہ رسالو دے بہوں سارے بندیاں نوں بندی بنا لیا ۔اوہ راجہ رسالونوں وی بندی بنا نا چاہندا سی ۔راجہ رسالو تے راجہ سری کپ وچ شطرنج دا مقابلہ ہو یا ۔جس وچ سر ی کپ...

World Peace in the Light of Sīrah of the Prophet Muḥammad SAW

The advancement in science and technology has made the world peace and prosperity very important at this time in the human history. We find in the human history, since it was recorded, that almost all the civilizations were very intolerant, brutal to their opponents, especially, to the believers of other religions. On the other hand, the Islamic states were the most tolerant and accommodating to other religions. This fact is proved from the early history of Islām during the period of the Prophet Muḥammad (r) and his immediate successors. Similar is the case in the later history of the Muslims, during the period of the Abbasid, the Umayyids in Spain, the Turks, the Mughal era and in the Far East. Human and economic losses in wars were very huge during the first, the second world wars, and the current wars being fought in Iraq and Afghanistan. The human and material losses are horrible. The author believes that the Prophet Muḥammad (r) ’s teachings and traditions of moderation, tolerance, human respect, freedom of religious practice are the only ways to peace and prosperity in the world.

Reconstruction of Qualitative Gene Regulatory Networks

Genes provide instructions for the synthesis of functional products, such as, proteins. Gene expression develops the functional products using the instructions encoded in the genes. Gene regulation controls the process of gene expression in a way that it can regulate the increase or decrease of the gene expression resulting in the synthesis of specific functional products. It also controls when or when not to express a particular gene to produce a particular protein. Collection of regulatory elements, such as, genes and their interconnections showing the gene expression levels, are visualized as a Gene Regulatory Network (GRN). GRNs act as a tool for understanding the causation relationships between the genes and proteins representing complex cellular functionalities. Computational biology has laid its main focus nowadays on the reverse engineering or reconstruction of GRNs from gene expression data to decode the complex mechanism of the cellular functionalities. These efforts have resulted in improved and more precise diagnostics and therapeutics. Microarray technology of analyzing gene expressions calculates expression of thousands of genes simultaneously under different conditions, like, control or disease conditions. It helps in identifying over-expressed genes likely to be associated with the disease. Multiple approaches to reconstruct GRNs from gene expression data, apply various techniques, such as, distance measures, correlations, mutual information algorithms, dynamic and quantitative probabilities. These approaches result in identifying symmetric and diagonal gene pair interactions. Symmetric gene pair interactions cannot be modeled as direct activation and inhibition interactions. Moreover, diagonal nature shows that a gene cannot self-regulates itself, which is also contradictory with the true nature of gene pair regulatory interactions. Compromising the true asymmetric and non-diagonal nature of the actual gene pair regulatory interactions, can lead to incomplete and inferior predictions. To our knowledge, no such complete model exists to generate GRN representing all possible network motifs between gene pairs, such as, activation, inhibition and self-regulations. The proposed approach, named as, Multivariate Covariance Network (MCNet), aims at reconstructing GRN applies multivariate co-variance analysis and Principal Component Analysis (PCA) to identify asymmetric and non-diagonal gene interactions. The GRN developed using the MCNet approach holds all the possible network motifs, representing all kinds of gene-pair regulatory interactions (i.e., positive and negative feedback loops as well as self-loops). The asymmetry is achieved by computing the distance measure of the genes with respect to the eigen values of the related genes showing variable behaviors under different conditions. PCA in the MCNet approach selects gene-pair interactions showing maximum variances in gene regulatory expressions. Asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus, lowering the false positive rate of interacting genes by minimizing the connections between previously unlinked network components. The performance of the proposed approach, MCNet, has been evaluated using a real data set as well as three synthetic and gold standard data sets. The MCNet approach predicts the regulatory vi interactions with higher precision and accuracy as compared to some currently state-of-the-art approaches. The results of the MCNet approach using the real time-series RTX therapy data set identified self-regulatory interactions of the differentially expressed (DE) genes with 80.6% accuracy. The MCNet approach predicted the gene regulatory interactions of the time-series synthetic Arabidopsis Thaliana circadian clock data set with 90.3% accuracy. The self-regulatory interactions identified in the RTX therapy and synthetic Arabidopsis Thaliana data sets are further verified from the literature because gold standards are not available for these data sets. Gold standard DREAM-3 and DREAM-8 in silico data sets, are also used to evaluate the performance of the proposed approach, while comparing with some existing approaches. The DREAM-3 in silico E-coli gold standard data set does not contain any self-regulations, while the DREAM-8 in silico phosphoproteins gold standard data set hold self-regulations. The results demonstrate the enhanced performance of the MCNet approach for predicting self-regulations only in the DREAM-8 in silico phosphoproteins data set with 75.8% accuracy. The MCNet approach for reconstructing GRN identifies direct activation and inhibition interactions as well as self-regulatory interactions from microarray gene expression data sets. The generated GRN can constitute positive and negative feedback loops as well as self-loops to demonstrate true nature of the gene-pair regulatory interactions. In future, it is aimed to enhance the functionality of the MCNet approach by modeling the dynamics of the GRNs, such as, oscillations and bifurcations towards steady state