Search or add a thesis

Advanced Search (Beta)
Home > Tracking Trend

Tracking Trend

Thesis Info

Author

Muhammad Zubair

Supervisor

Sohail Asghar

Department

Department of Computer Science

Program

BCS

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Subject

Computer Science

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720086445

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ہجر نامہ

ہجر نامہ
ساری رات میں رکھیاں تاہنگاں
دھمی ککڑاں دتیاں بانگاں
ملاں اُٹھ مسیت نوں جاوے
اللہ دا سد پیا سناوے
نیکاں دے ایہہ من نوں بھاوے
بُریاں وجن پیّاں سانگاں

زر اور معاوضۂ زر: سرمایہ دارانہ اور اسلامی نظام معیشت کے تناظر میں تجزیاتی مطالعہ

Money and its Compensation: An Analysis with Respect to Capitalism and Islamic Economic System In trade and commerce, money has remained the backbone of the business and trade. From the beginning to the end, money is an indispensable part of every economic activity. For this importance, money is treated as a factor of production. But the question is what is meant by money and whether the value of money can be recognized as a land, house, shop, car, bungalow and merchandise goods? And then what is the status if it is in the form of interest and it is linked to inflation? The research article underlines the key aspect regarding money and its compensation in the perspective of capitalistic and Islamic economic system. The qualitative and analytical approach was applied in this article. A literature review concluded that time value of money in capitalistic economy is unlimited while the Islamic economic system does not recognize its value in form of interest and with the association of inflation rate. It is recommended that business to be done on a profit and loss basis, rather than on debt and interest and instead of linking money to the inflation rate, alternatives should be proposed, for example if a person wants to take the loan, he should be given what he needs on cost plus profit basis.

An Investigation into the Influence of Different Welding Methods on the Microstructure, Mechanical Properties and Residual Stress Distribution in Ti-5Al-2. 5 Sn Alloy

The use of welding processes, especially for joining of aerospace alloys has gained a significant importance in the recent years. This is owing to the enhanced joint efficiency, increased sealing ability and reduced weight of the welded structures as compared to riveted structures. Moreover, the modern trend in aerospace industry has shifted towards the use of titanium alloys, due to their high strength to weight ratio and good corrosion resistance. This work is focused on the welding of the well-known α titanium alloy Ti-5Al-2.5Sn, which haslow cost alloying elements as compared to the mostly widely used Ti-6Al-4V alloy, has a good weldability and is also more suitable for high temperature aerospace applications. Tungsten inert gas (TIG), laser beam welding (LBW) and electron beam welding (EBW) are the mostly used welding methods for titanium alloys. As compared to TIG welding, LBW and EBW are always the preferred welding methods due to low heat input and deep penetration characteristics. However, TIG welding is mostly employed industrially due to significantly less capital cost and ease of automation due to reduced equipment size. A number of gaps were identified in the open literature related to the welding of Ti-5Al-2.5Sn alloy. Firstly, few studies are available in the public domain related specifically to the welding of Ti-5Al-2.5Sn alloy using TIG, LBW and EBW. Moreover, the reported work related to comparison of TIG, LBW and EBW of other titanium alloys is limited and there is a need of in-depth, comprehensive comparison of these welding processes in terms of microstructure, mechanical properties and residual stresses in the welded structures. The opportunities available for parametric analysis of LBW process in titanium alloys and optimization of the pulsed TIG welding process for titanium alloys especially Ti-5Al-2.5Sn alloy have not been explored to full potential. The present work aims mainly at improving the pulsed TIG (P-TIG) welding process for 1.6 mm thick Ti-5Al-2.5Sn alloy sheet so that resultant microstructure, mechanical properties and residual stresses are comparable to that of pulsed LBW (P-LBW) and EBW weldments. Microstructure, oxide contents and microhardness of fusion zone, HAZ width, weld zone strength, tensile residual stresses and plate deformations were measured to compare the performance of the weldments. P-LBW was found to be most suitable in terms of these performance attributes of TI-5Al-2.5Sn welds due to low heat input which led to a complete martensitic transformation in the FZ. The absence of shielding gas due to vacuum environment in EBW was beneficial in terms of increasing the joint quality (low oxide contents). However, an increased width of heat affected zone (HAZ) and partial α’ martensitic transformation in FZ of EBW was observed as compared to P-LBW. High heat input and much wide heat source in P-TIG led to coarse microstructure and partial martensitic transformation in FZ resulting in increase of FZ and HAZ width, plate deformations and tensile residual stresses and a reduction in FZ microhardness and weld zone strength. The optimization of P-TIG welding was performed using Box-Behnken design of experiments in which a mathematical was developed to establish the relation between the welding input factors (peak current, background current and welding speed) and output responses (FZ width, HAZ width, FZ grain size, ultimate tensile strength, notch tensile and impact strength, and elongation, longitudinal and transverse residual stresses). The dependence of output responses on the inputs of P-TIG welding and its physical significance in the context of microstructure was discussed in detail. Optimization was performed through different criteria and a multi-response optimization was suggested to maximize the joint strength, impact properties and minimize the residual stresses. Results were experimentally validated and the range of welding input parameters were recommended through overlay plots for industrial application.