Search or add a thesis

Advanced Search (Beta)
Home > Devlopment of Gsmbased Gas Leakage Detection System Using Arduino

Devlopment of Gsmbased Gas Leakage Detection System Using Arduino

Thesis Info

Author

Hilal Ahmed

Supervisor

Haider Ali

Department

Department of Electrical Engineering

Program

BET

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Subject

Electrical Engineering

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720224443

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مولاناسید منت اﷲ رحمانی

مولانا سید منت اﷲ رحمانی مرحوم
دارالمصنفین میں یہ خبر نہایت غم و ندوہ کے ساتھ سنی گئی کہ امارت شرعیہ بہار و اڑیسہ کے امیر، مسلم پرسنل لا بورڈ کے جنرل سکریٹری، مسلم مجلس مشاورت کے بانی ممبر، دارالعلوم دیوبند و ندوہ کی مجلس انتظامیہ کے رکن اور خانقاہ رحمانی کے سجادہ نشین مولانا سید منت اﷲ رحمانی کا انتقال ۳ رمضان المبارک ۱۹؍ مارچ کی شب میں ہوگیا، اناﷲ وانا الیہ راجعون۔
ان کا مرثیہ صرف ایک عالم کا نہیں بلکہ ایک عالم کا ماتم ہے، ہندوستانی مسلمانوں کے لیے ان جیسی ستودہ و صفات ہستیاں اس دور قحط الرجال میں نعمت سے کم نہیں اور اس نعمت کے چھن جانے سے حرمان و نقصان کی کیفیت اور شدید ہوجاتی ہے۔
انھوں نے ایسے ماحول میں آنکھیں کھولیں جو علم و معرفت اور شریعت و طریقت کی دولت سے مالا مال تھا ان کے والد ماجد مولانا سید محمد علی مونگیریؒ، شاہ فضل رحمن گنج مراد آبادیؒ سے تعلق، رد عیسائیت، تحریک ندوۃ العلماء اور ردقادیانیت میں اپنے کارناموں کے سبب نمونہ سلف اور طبقہ علماء و مشائخ میں ممتاز حیثیت رکھتے تھے، ان کی اقامت کانپور میں تھی لیکن ہدایت و ارشاد کے لیے وہ مونگیر اور اس کے اطراف میں برابر تشریف لے جایا کرتے تھے، جب وہاں قادیانیت کا فتنہ زیادہ سنگین ہوا تو اس کا مکمل قلع قمع کرنے کے لیے ۱۳۲۰؁ھ میں انھوں نے مستقل طور پر مونگیر میں اقامت اختیار کی، مولانا منت اﷲ رحمانی ۱۳۳۲؁ھ میں پیدا ہوئے، اپنے بھائیوں میں وہ سب سے چھوٹے تھے، مولانا مونگیریؒ کے انتقال کے وقت ان کی عمر تقریباً دس برس تھی، ان سے بیعت تو حاصل ہوئی لیکن استفادہ کا زیادہ موقع نہ ملا، انھوں نے بعد میں دیوبند اور ندوہ میں بھی تعلیم حاصل کی، ندوہ میں وہ...

Analysis of Factors Affecting Nursing Services with Inpatient Satisfaction at Harapan / Pematangsiantar Hospital

Improving quality of nursing services became a major issue in health development both in national and global, because of growing demands on health services organization to give satisfaction with nursing services maximally by providing the best service to facilitate the ease of fulfilling the needs and realize the satisfaction. This study was a quantitative research design survey analytic used cross-sectional approach. It was conducted at Harapan Hospital Pematangsiantar. The population were 280 respondents  and  a sample obtained by 74 respondents. Data analysis of univariate, bivariate using chi - square and multivariate using logistic regression at 95% confidence level (α =.05). The result showed that more respondents who gave a rating of good in the aspect of reliability, followed by the aspect of responsiveness, tangible, assurance, and empathy the influence aspects in this study were reliability        (p=.002), assurance (p=.014), tangible (p=.011), empathy (p=.030), responsiveness (p=.024). The most influential aspects of this study was  the reliability with  Exp(B)/OR=20.667 that aspect of reliability that respondents perceived to have the opportunity 20.667 times to produce patient satisfaction. It is concluded that there was an influence of reliability, assurance, tangible, empathy, responsiveness to patient satisfaction in Harapan Hospital. It is recommended to hospital to further improve the quality of nursing service, to improve the welfare of nurse through provision of appropriate  incentives hope the nurse, provide training, and installing  CCTV in every  room and monitoring of the level of patient satisfaction on a regular basis  through a survey so that can improve the quality of  hospital services as a whole.

Investigating Machine Learning Based Prediction of Protein Interactions

Protein interactions are crucial in the cell for performing cellular functions and the study of protein interactions is a very important domain of research in bioinformatics. In reference to protein interactions, biologists are usually interested in three core problems: determining pairwise protein interactions, determination of binding affinity, and identification of the interface. Computational methods to solve these protein interaction problems have emerged as an active research area due to tedious, costly, and time-consuming experimental procedures. Our aim in this work is to develop novel machine learning based methods for protein interaction, binding affinity and interaction prediction with improved generalization performance. In this dissertation, we have developed host-pathogen protein interaction predictors using machine learning. One of our findings is that existing methods for protein interaction prediction that use K-fold cross-validation for performance assessment report over-estimated accuracy values as K-fold cross-validation does not take pairwise protein similarity between training and test examples into account. To control this data redundancy at pathogen protein level, we have proposed and advocated the use of an alternate evaluation scheme called Leave One Pathogen Protein Out (LOPO) cross-validation along with some biologist centric metrics for designing protein-protein interaction prediction methods. We have also designed a novel machine learning model called CaMELS (CalModulin intEraction Learning System) for interaction and interaction site prediction of Calmodulin (CaM) which is a very important and highly conserved protein across all eukaryotes. CaMELS relies on a novel implementation of multiple instance learning solver for protein binding site prediction that leads to significant improvement in predictive performance. One of our collaborators has confirmed the effectiveness of CaMELS through wet-lab experiments as well. We have also focused on the more generic problem of predicting binding affinity in protein interactions and presented various sequence-based machine learning models. xxiv For this purpose, we have developed a novel machine learning method which is based on the framework of Learning Using Privileged Information (LUPI). Our state-of-the-art method uses protein 3D structure as privileged information at training time while expecting only protein sequence information during testing. This makes our machine learning method flexible by allowing it to leverage protein structure information during training while requiring only protein sequence information during testing. We have also developed a webserver for an existing state-of-the-art protein-protein interface prediction method called PAIRPred. The accuracy of this webserver has also been validated by our collaborators through wet-lab experiments as well.