Search or add a thesis

Advanced Search (Beta)
Home > Gsm Based Fuel Monitoring System

Gsm Based Fuel Monitoring System

Thesis Info

Author

Ubaid Zahoor Abbasi and Others

Supervisor

Ali Khaqan

Department

Department of Electrical Engineering

Program

BCE

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2012

Thesis Completion Status

Completed

Subject

Electrical Engineering

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720257549

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ارشاد ڈیروی دی شاعری وچ سراپا نگاری

ارشادؔ ڈیروی دی شاعری وچ سراپا نگاری

رومانوی شاعری دی اہمیت اوس وچ ہوئی سراپا نگاری اتے منحصر ہو ندی اے ۔عمدہ سراپا نگاری پڑھن والے دے ذہن اتے انج سوار ہو جا  ندی اے جیویں کوئی زندہ آدمی اکھاں سامنے ہووے ۔عام طور تے شاعری دیاں بہت ساریاں گلاں پڑھن والا بھلا دیندا اے پر سراپا نگاری راہیں کوی لوک جوکسے دی مورت تراش دے نیں اوہ ہمیشہ یاد رہندی اے ۔ڈاکٹر احسن فاروقی ایس بارے لکدے نیں :

’’کردار کو زندگی بخشنے کے سلسلے میں یہ ضروری ہے کہ شاعر سراپا نگاری کا سہارا لیتے ہوئے کردار کی تخلیق کرے ۔کسی مؤرخ کی طرح اسے کردار کی بابت ضروری حالات کا بیان کر دینا ہی کا فی نہیں ہے بلکہ اسے ان سب حالات کو جمع کر کے اپنی قوت تخیل کے ذریعے ان میں ایک نئی روح پھونک دینا ہے ۔‘‘(۱)

کردار دو طرح دے ہوندے نیں ۔پہلا سادہ کردار تے دوجا مکمل کردار ۔سادہ کردار اوہ ہوندے نیں ۔جہناں نوں عام نمونے یا خاکے وی آکھیا جاندا اے ۔ایس قسم دے کردار اک خاص خیال دے تحت لکھے جاندے نیں یعنی انساناں والیاں صفتاں وچوں اک صفت ایہناں وچ پائی جاندی اے ۔مکمل کردار اوہ کردار ہوندے نیں جنہاں وچ انسانا ں والیاں بہت صفتاں پائیاں جاندیاں ہوون ۔ایس دے نال نا ل انفرادی صفتاں وی موجود ہو ندیاں نیں ۔جدوں ایہہ گل ارشادؔ ڈیروی دی شاعری اتے لاگو کر دے آ ں تا ں ساہنوں اوہناں دی فنی تے فکری عظمت دا قائل ہونا پیندا اے کیوں جے اوہناں نے اپنے محبوب دی سراپا نگاری انج کیتی اے کہ پرھن والا نہ صرف محبوب دے حسن و جمال وچ گواچ جاندا اے ۔سگوں اوس نوں ارشادؔ ہواراں دے روپ وچ اپنا محبوب وکھالی...

Orientalist Perspectives in Ellis’s Breadwinner Trilogy: A Postcolonial Critique

The study critically engages with the issue of continuity of the orientalist rhetoric in the contemporary literary yields. To establish and substantiate the argument, the researchers have analyzed Deborah Ellis’s Breadwinner Trilogy (2009) that comprises Breadwinner, Parvana’s Journey, and Mud City. All the three fictional narratives claims to have represented the life of the Pakistani and Afghani characters who have been shown to face the existential threats in the wake of the insecurities that have engulfed the region. However, the study contends, the Canadian writer has also given way to the parochial psychological and sociological schema that has been held as the prime representational trope regarding the East, that is, Orientalism. The qualitative and textual approach has facilitated the researchers to negotiate the identified thematic patterns with the interpretive freedom. In this regard, framing the fictional representation into the Saidian critique of the orientalist discourse, the study explicates the reductive approach of the writer and exposes the latent ideological triggers working under the manifest humanist projections. Thus, the study strengthens the postcolonial stance and, therefore, will sharpen the Pakistani students’ understanding of the current socio-literary debates.

Quantitative Analysis of Dynamics of Solar Activity Cycles in the Perspective of Data Distribution and Tail Analysis

Sun is the main source of energy for the earth and other planets. Its activity in one or the other way influences the terrestrial climate. Particularly, the solar activity manifested in the form of sunspots is found to be more influential on the earth’s climate and its magnetosphere. Links of the variability in terrestrial climate, sunspot cycles and associated magnetic cycles have been the concern of many recent studies. The role of the sun and its activities to understand the space weather and the earth’s environment interaction has been the unique importance in all eras. In this dissertation, we have fitted some adequate probability distributions and stochastic modeling on solar activity (particularly sunspots and solar flares) cycles and terrestrialmagnetic (K-index) activity data comparatively. The 24 cycles (1749-2014) of sunspots including 24th cycle that is in progress, last 4 cycles (20, 21, 22 and 23) of solar flares (1966-2008) and terrestrial K-index activity data (1932-2014) are used in the research work. We have compared the solar activity cycles and K-index activity cycles (associated with solar activity cycle) in the perspective of probability distributions. Comparing both the data we have distributed the time series (1932-2014) among 22-year cycle (2 solar cycles) of each. This kind of distribution is based on the period of one magnetic cycle of sun in which polarity is changed after each 11 years. The magnetosphere’s and magnetic field’s variation of earth can be detected and analyzed by the change in K-index data on which earth climate is depends. The geomagnetic activity is the one of the best recorded sign on earth of solar activity variations. It is basically showing a relationship between space weather and earth''s climate.Results obtained in this dissertation show thequasi-regular (persistent) dynamics of solar activity and K-index activity cycles along with the total time series data from the perspective of fractal dimension. Long-range dependence for each activity cycle is also calculated in terms of Hurst exponent. Theoretical instrument is developed between solar and K-index activity cycles to understand their long term relationship. Stochastic modeling is also fitted on the solar activity and K-index cyclic as well as on the total time series data. The result shows the heavy tail for the sunspots and K-index activity time series data used in this dissertation. The stochastic model FARIMA (Fractional Auto Regressive Integrated Moving Average) is applied on the cycles along with their total time series data as used time series are long ringing dependence (LRD). FARIMA has a capability to use on short and long term conditions. Fractional differencing parameter and heavy tails parameter are calculated to understand the strength and peak of each cycle. The parameters of FARIMA model are obtained by MLE (Maximum Likelihood Estimator). Goodness-of-fit (AIC, BIC and HIC) are used to select the best fitted model among FARIMA (0, d, 0), (1, d, 0), (0, d, 1) and (1, d, 1). The log - likelihood is also estimated for further verification of significant model. Any time series that have heavy tail, fitting FARIMA modeling for them can be more useful to understand their expected behavior in future. The underlying physics of solar activity and K-index activity cycles is modeled by FARIMA (p, d, q) in this dissertation. Finally, we have analyzed and verified that the sunspots and K-index activities are followed Markov process. Transition matrices for both the activities are estimated to understand their physical behavior in 4 different selected states. Stationarity for stochastic matrices is observed in this dissertation to understand similar physical behavior in the used activity data. 2-dimensional correlation between stochastic matrices of sunspots and K-index activity cycles are calculated to understand how much relationship strong between them. In this connection 2-dimensional correlation is also obtained between sunspots and ENSO data to observe the sunspots effects on the earth’s climate. Bayesian posterior and prior are also observed in the estimated stochastic matrices as Bayesian approach is more adequate to understand the complex in the models. By the results obtained we can say that all the activities used in this dissertation are correlated and predictable. We can use probabilistic and stochastic approach to model them. The topic is wide that we could not cover by single dissertation, the same can be done with other solar, geomagnetic and global indices that we did not use in this research work to understand the space weather and earth climate interaction more intensely.