بر صغیر پاک و ہند میں اردو میں ترجمہ و تفاسیر کا آغاز سولھویں صدی عیسوی میں ہوا لیکن یہ متفرق سورتوں اور پاروں سے آگے نہ بڑھ سکا۔ اردو زبان میں سب سے پہلا تشریحی ترجمہ حکیم محمد شریف خان بن محمد اکمل خان(م۱۲۲۲ھ) نے لکھا۔ یہ ترجمہ شائع نہیں ہوا اور ان کے خاندان میں محفوظ ہے۔ ہندوستان میں پہلی اردو تفسیر، چراغ ابدی ہے جو مولوی عزیز اللہ ہمرنگ اورنگ آبادی نے ۱۲۲۱ھ میں لکھی۔ یہ صرف تیسویں پارے کی تفسیر ہے۔ اسی طرح شاہ مراد اللہ انصاری سنبھلی کی تصنیف خدائی نعمت بہ معروف تفسیر مرادی بہت مقبول ہوئی۔ یہ بھی تیسویں پارے کی تفسیر ہے اور تین سو صفحات پر مشتمل ہے۔ یہ۱۱۸۵ھ میں مکمل ہوئی۔
ہندوستان کے معروف محدث شاہ ولی اللہ کے فرزند شاہ رفیع الدین (م۱۲۳۲ھ۱۸۱۷ء )نے ۱۲۰۰ھ میں قرآن مجید کا ترجمہ لکھا جو کہ مختصر اور جامع لفظی ترجمہ ہے۔ شاہ رفیع الدین کے چھوٹے بھائی شاہ عبدالقادر (۱۲۳۰ھ، ۱۸۱۵ء ) نے ۱۲۰۵ھ میں موضح قرآن کے نام سے اردو زبان میں قرآن کا ترجمہ اور حواشی لکھے۔ شاہ صاحب کا یہ ترجمہ اپنے دور کے لحاظ سے بہترین ترجمہ ہے۔ اس میں عربی الفاظ کے مناسب ترین اردو اور ہندی مترادفات کو استعمال کیا گیا ہے۔ شاہ عبدالقادر کی اس تصنیف کو اردو زبان کی پہلی مکمل تفسیر قرار دیا جا سکتا ہے۔ سر سید احمد خان (۱۸۱۷ء۔ ۱۸۹۸ء)کی تفسیر"تفسیر القرآن" بدلتے ہوئے حالات کے تناظر میں خصوصی اہمیت رکھتی ہے۔ اس کی پہلی جلد ۱۸۸۰ء میں شائع ہوئی۔ سرسید احمد خان کا دور مسلمانوں کے انحطاط اور انگریزی غلبے کی وجہ سے کش مکش کا دور تھا۔ جدید تہذیب کے زیر اثر عقلیت پسندی اور قدیم روایات سے انحراف کی کئی مثالیں سامنے آ رہی تھیں۔ اس عہد کی تفاسیر...
This study aims to identify the significance of driver’s socioeconomic demographics (SEDs) in the decision to speed and crash involvement. A questionnaire was designed consisting of a driver’s SEDs, speeding propensity, and crash experience. This questionnaire was conducted with the students and employees of the University of Nizwa and other drivers at the selected locations. A total of 604 usable samples were obtained. Simple frequency distribution and discriminant multivariate analysis were conducted on the driver’s responses. Survey results revealed that about 47.7% of the drivers have experienced a crash. The driver’s gender nationality, profession, age, type of vehicle drive, driving experience, and past crash experience are significant attributes of the driver’s speeding behavior. Ordered probit analysis for speeding behavior and simple probit regression analysis for crash involvement was conducted. The male drivers and those who are under the age of 30 years and have driving experience of more than 3 years have more likelihood to exceed the speed limits than other drivers. Similarly, the driver’s gender, age (≤ 30 years), and those who are employees have a significant correlation with the propensity of crash involvement. Male and young drivers have more likelihood to be involved in a crash.
Image fusion techniques merge the complementary information of several images (multi-focus, multi-exposure and multi-modal). Each of these scenarios poses different challenges for image fusion techniques, which are being extensively researched. However, most of these works assume that source images are preregistered, which is a less practical scenario. Both registered and unregistered image fusion algorithms are considered in this thesis. The registration involves the geometrical / spatial alignment of source images taken using different sensors or a sensor in different operating conditions. This research is concerned with the reliable fusion schemes of several scenario images (including muti-focus, Infra Red (IR) and visible, Computed Tomography (CT) and Magnetic Resonance (MR), and multi-exposure images) demonstrating high quality fused results without loss of useful information. The first scheme is a textural registration based multi-focus scheme involving the Gabor filtering (with specific frequency and orientation) for extracting texture features from the images. The filtered images are aligned/registered using affine transformation. Noise and blur play an important role in image fusion and need to be classified and treated for quality image fusion. The next two fusion schemes deal with multi-exposure noisy (real and synthetic both) and blur images. In the first algorithm, the noisy, blurry and clean images are classified using Laplacian filter and histogram spread. The noise is reduced in the frequency domain. Heavy weights are assigned to noise free pixels and the blur images are passed through the Wiener filter. In the second algorithm, a noise resistant image fusion scheme for multi-exposure sensors using color dissimilarity (for motion detection and removal), median and noise maps is proposed. A well exposed image is obtained as a result of weighted average of multi-exposure source images. Higher valued weights are assigned to pixels containing low values of noises, high values of color dissimilarity and median maps. The next work (two schemes) involve pre-registered visible and IR images. In the first one, a three stage image fusion scheme using Genetic Algorithm (GA) is presented. In the first stage, it segments the image into homogeneous regions and generates segmentation maps. In the second stage, the segmentation maps are combined by an adaptive weight adjustment procedure. The third stage fuses the input images and segmentation maps via GA based multi- objective optimization strategy. The second image fusion scheme uses Un-Decimated Dual Tree Complex Wavelet Transform (UDTCWT) for astronomical images. The UDTCWT reduces noise effects and improves object classification due to its inherited shift invariance property. Local standard deviation and distance transforms are used to extract useful information, especially small objects. In the medical (CT and MR) image fusion scheme, the source images are contrast enhanced using histogram equalization. It is a sparse decomposition based fusion technique that uses the dictionary learnt from input images and k-mean singular value decomposition algorithm. The scheme splits CT and MR images into texture and gradient images. The texture decomposition improves the overall performance of the sparse representation based fusion. The quantitative analysis performed using mutual information, structural similarity measure and edge dependent based performance metrics, yields improved results for proposed schemes, as compared to existing schemes.