Search or add a thesis

Advanced Search (Beta)
Home > Lte Based Layer 1 Design for Cellular Mesh Relaying Networks

Lte Based Layer 1 Design for Cellular Mesh Relaying Networks

Thesis Info

Author

Hina Zargham and Others

Supervisor

Shahwaiz Iqbal

Department

Department of Electrical Engineering

Program

BET

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2011

Thesis Completion Status

Completed

Subject

Electrical Engineering

Language

English

Added

2021-02-17 19:49:13

Modified

2023-02-17 21:08:06

ARI ID

1676720304854

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

تمھارے ساتھ کے سب استخارے چھوٹ گئے

تمھارے ساتھ کے سب استخارے چھوٹ گئے
ملے ہیں درد خوشی کے سہارے چھوٹ گئے

ہمارے حصے میں آئے جفا کے سب موسم
وفا کریں گے جو کہتے تھے سارے چھوٹ گئے

نظر نظر میں دیے سب نے کتنے درد ہمیں
سرور و لطف کے تھے جو نظارے چھوٹ گئے

ہماری نائو کے درپے بھنور ہزار ہوئے
جو منزلوں کا نشاں تھے کنارے چھوٹ گئے

ہے پور پور میں ٹھہرا فضاؔ کی درد نیا
خوشی کے لمحے جو مل کے گزارے چھوٹ گئے

Myths and Misconceptions of Covid-19 Vaccination in Women of Reproductive Age

Myths and Misconceptions spread very fast as compared to facts in the current situation of social connectivity. The same is about Covid-19 infection and its vaccine in women of reproductive age and in pregnancy. We need to correct these misconceptions with evidence which is the objective of this editorial about covid vaccination.

Variational Iteration Technique and Numerical Methods for Solving Nonlinear Equations

Various problems of pure and applied sciences such as physics, chemistry, biology, engineering, economics, management sciences, industrial research and optimization can be studied in the unified frame work nonlinear equation f ( x) = 0. In this thesis, we use the variational iteration technique and its various modifications to suggest and analyze several iterative methods for finding the approximate solution of the nonlinear equations. Using suitable finite difference schemes, a number of new iterative methods free from second derivative are considered and analyzed. Variational iteration technique is also used to find the multiple roots of nonlinear equations with known and unknown multiplicity. Several examples are given to illustrate the efficiency and implementation of these new methods. Comparison with other methods is given to show the performance of new methods.