ڈاکٹر راجندر پرشاد
خدا کاشکر ہے جو سفر ۹؍ ستمبر ۶۲ء کوشروع ہواتھا وہ بخیر وخوبی ۲۳؍ مئی ۶۳ء کوپورا ہوگیا۔ اس مدت میں علم وادب اورملک وقوم کی بعض بڑی نامور اورمحبوب شخصیتیں ہم سے ہمیشہ کے لیے جدا ہوگئیں،ان میں سابق صدر جمہوریہ ڈاکٹر راجندر پرشاد،ڈاکٹر محی الدین زورؔ،خان بہادر مولوی محمدشفیع سابق پروفیسر عربی پنجاب یونیورسٹی لاہور، مولانا سعید انصاری اور جناب شفیق جونپوری خاص طور پر لائقِ ذکرہیں۔
گذشتہ چندماہ سے مکاتیب کناڈانے نظرات کے صفحات پرقبضہ کررکھا تھا اس لیے ان حضرات کی رسمِ تعزیت برہان میں حسب معمول ادانہ ہوسکی، جس کاافسوس ہے۔اوّل الذکر ملک کی تحریکِ آزادی کے بلند پایہ لیڈر، پہلے صدر جمہوریہ ہندہونے کے ساتھ ساتھ اخلاق واوصافِ ذاتی کے اعتبار سے بھی غیر معمولی شخصیت اورکردار کے انسان تھے۔ سادگی، مذہبیت، خلوص، رواداری اور مروت و وضعداری اُن کے خاص اوصافِ کمال تھے اوراِس حیثیت سے وہ صحیح معنی میں گاندھی جی کے نقشِ قدم پر چلنے والے تھے، علاوہ ازیں انگریزی زبان کے نامور مصنف اور اُردو ،فارسی کے فاضل بھی تھے۔ [جون ۱۹۶۳]
Nigeria has been, for the last four decades, struggling with the menace of inter-religious hostilities between Christians and Muslims who formed the largest religious groups in the country. Numerous policies and programs brokered by various Governments and non-Governmental organizations to curtail the situation failed to yield the desired result. Islamic studies as one of the widely offered programs in the Nigerian universities has the prospect of offering solution to the predicament. However, the courses taught in the program are mainly studies on the Qur’an, Hadith, Tauhid, Ibadat, Fiqh, Islamic civilization, thought and history without single course on interfaith relations. Taking Umaru Musa Yar’adua University Katsina (UMYUK)-Nigeria, as a study case, this paper attempts to draft and propose the inclusion of interfaith relations courses in the curriculum of Islamic Studies programs at the university level in Nigeria for realization of peaceful coexistence in the country. The researcher uses primary data from the Qur’an and sunnah as well as secondary data from different sources. The paper employs exegetical methods and adopts content analysis in the process of conducting the research. The article recommends merging of duplicated courses in the existing curriculum and inclusion of the proposed courses by the Nigerian universities and other institutions of higher learning that offer various Islamic studies programs for the attainment of peaceful interfaith relations in the country.
This thesis project focuses on the numerical solutions of selected nonlinear hyperbolic sys tems of partial differential equations (PDEs) describing incompressible and compressible flows. Such type of PDEs are used to simulate various flows in science and engineering. The underlying physics of such systems of PDEs is very complex and some mathematical and computational issues are associated with them. For instance, they may contain non conservative terms or may be weakly hyperbolic. The strong nonlinearity of the systems could generate sharp fronts in the solutions in a finite time interval, even for smooth initial data. Moreover, accurate discretization of the non-conservative terms is a challenge task for the numerical solution techniques. In the presence of non-conservative terms, well balancing, positivity preservation and capturing of steady states demand special attention during the application of a numerical algorithm. In this thesis project, we develop exact Riemann solvers for the one-dimensional Ripa model, containing shallow water equations that incorporate horizontal temperature gradients and considering both flat and non flat bottom topographies. Such Riemann solvers are helpful for understanding the behavior of solutions, as these solutions contain fundamental physical and mathematical characters of the set of conservation laws. Such solvers are also very helpful for evaluating performance of the numerical schemes for more complex models. Afterwards, third order well-balanced finite volume weighted essentially non-oscillatory (FV WENO) schemes are applied to solve the same model equations in one and two space dimensions and a Runge-Kutta discontin uous Galerkin (RKDG) finite element method is applied to solve this model in one space dimension. In the case of compressible fluid flow models, an upwind conservation element and solution element (CE/SE) method and third order finite volume WENO schemes are applied to solve the dusty gas and two-phase flow models. The suggested numerical schemes are able to tackle the above mentioned associated difficulties in a more efficient manner. The accuracy and order of convergence of the proposed numerical schemes are analyzed qualitatively and quantitatively. A number of numerical test problems are considered and results of the suggested numerical schemes are compared with the derived exact Riemann solutions, results available in the literature, and with the results of a high resolution central upwind (CUP) scheme.