Search or add a thesis

Advanced Search (Beta)
Home > Two Poets, One Trajectory: Keats and Faiz, Across-Cultural Homology

Two Poets, One Trajectory: Keats and Faiz, Across-Cultural Homology

Thesis Info

Author

Ali Naqi

Supervisor

Aisha Jadoon

Department

Department of Humanites

Program

REL

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Subject

Humanites

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720446808

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

واجدہ تبسم: ایک بے باک افسانہ نگار

واجدہ تبسم:ایک بے باک افسانہ نگار
محمدشاہدحفیظ۔میلسی
واجدہ تبسّم۱۶مارچ۱۹۳۵ء کوامراوتی (مہاراشٹر)میں پیداہوئیں۔والدہ کاتعلق نواب خاندان سے تھا جواپنے جہیز میں ڈھیروںسونے کے علاوہ پانچ گاؤں بھی جہیز میں لائی تھیں۔جب کہ والدپیشے کے لحاظ سے وکیل تھے ،لاکھوں روپیہ کمایااورگنوایا ، یہی وجہ ہے کہ واجدہ جب ایک سال کی تھیں توان کی والدہ کی وفات اورتین سال کی عمر میں باپ کی وفات کے بعداوران کے آٹھ بہن بھائیوں کی کفالت کا ذمہ ان کی نانی نے اپنے سرلیا۔وہ سی پی کے ایک خاندان سے تعلق رکھتی تھیں۔ تقسیم کے بعدسی پی کے کئی خاندان حیدرآباددکن میں آکرآباد ہوگئے تھے۔ واجدہ کاخاندان بھی اسی میںشامل ہے جو صاحب ِ علم بھی تھااوردولت مندبھی،مگرحیدرآبادآنے کے بعد اس خاندان کی مالی حالت بہت خراب ہوگئی پھربھی ہمت اور استقلال سے اس خاندان کے لوگوں نے اپنی تعلیم کوجاری رکھا۔واجدہ تبسم نے اپنی ابتدائی تعلیم امراؤتی ہی میں حاصل کی۔ (۱)
۱۹۴۷ء میں حیدرآباددکن آئیں تویہاں حصولِ تعلیم کااِرادہ کیاتاہم گھریلو حالات کی تنگی کے باعث کلاس اوربس کی فیس ادا نہ کرنے کی وجہ سے انہیں پہلے کلاس اورپھر اسکول سے نکال دیاگیا۔واجدہ تبسّم نے نامساعدحالات میں واجدہ تبسّم نے گھر پر تعلیم جاری رکھنے کافیصلہ کیا۔ میٹرک ،ایف اے ،بی اے پرائیویٹ کیااورجامعہ عثمانیہ سے ایم اے کی ڈگری (پرائیویٹ ) حاصل کی ۔(۲)
والدنے واجدہ کانام ’’واجدہ بیگم‘‘رکھامگرانھوں نے اپناقلمی نام‘‘واجدہ تبسم’’اختیار۔یہ قلمی نام انھوں نے کیوں رکھااس بارے میں وہ خود لکھتی ہیں:
‘‘صاف سیدھی بات ہے زندگی نے مجھے غم ہی غم دیے،میں اپنی زندگی میں مسکراہٹیں بھرلیناچاہتی تھی،اوریہی کیابھی،اس طرح خودمیرے خاندان میں بھی پہلے پہل بہت کم لوگوں کوپتاچلاکہ میرا ہی نام‘‘واجدہ تبسم’’ہے۔"(۳)
واجدہ تبسّم نے لکھنے لکھانے کواپنامشغلہ بنایااورافسانہ نگاری میں اپنانام پیداکیا۔ان کے کئی افسانوی مجموعے شائع ہو چکے ہیں۔پہلی کہانی جریدہ "آئینہ"میں ستمبر۱۹۵۵ء میں‘‘میری یادداشت سے’’کے عنوان سے شائع...

PEMBELAJARAN NILAI NILAI KARAKTER ISLAM MODERAT DI PERGURUAN TINGGI

This study discusses how to integrate the values ​​of moderate Islamic character in Islamic higher education institutions. Integration of the value of moderate Islamic character values ​​can be implemented through learning in all subjects in Islamic higher education. Integration of Islamic character values ​​can be done on all subjects in Islamic higher education by referring to the concepts, systems and theories of learning. Learning the value of moderate Islamic characters can give students a personality color better than before and can inspire lecturers as learners. In carrying out enlightenment and intelligence in shaping tough, courageous, honest, tolerant, responsible and consistent students, in order to answer the challenges of powerlessness and inability to build national identity, inability to reconstruct the nation's potential responsively and dynamically. The hope of the writer, with the integration of the value of moderate Islamic character in all courses in Islamic higher education, can be the basis for the formation of adherent behavior, and the value of character can be a declarator of glory on the face of the earth

Performance Enhancement of Subspace Learning Face Recognition by Effective Use of Classifiers

Subspace based algorithms belong to one of the most explored face recognition algorithm categories which follow a holistic approach for feature extraction. These methods operate directly on the pixel intensities of a facial image and extract features. The basic trait of these algorithms is that they reduce dimensionality to reduce the computational complexity of feature extraction while keeping the statistical separation between different classes. Therefore these algorithms are the economical choice for feature extraction. These algorithms are based on the key concept that most of the information in a facial image is highly redundant and that the discriminating features reside in a subspace of the face image. Therefore these algorithms aim to extract these features by reducing the redundant and non-discriminating information. The choice of a classifier is the key factor in designing an efficient pattern classification system. This choice very closely relates to the data on which it is going to be applied. Another important issue is the irrelevancy in reported results of different classifiers. The evaluation criterion which is set for evaluating a specific classifier plays a significant role in determining the true potential of a proposed classifier. There is a need to evaluate these reported classifiers using the same evaluation criterion to judge the suitability of each classifier for a specific imaging condition. For face recognition, a surfeit of classifiers has been proposed to date but none of them alone is capable enough to cater with all the inherent variations of the facial image data. Therefore there is a need to explore combinations of classifiers known as ensemble classifiers. As different classifiers extract complementary features of the object to be classified, therefore combining the properties of individual classifiers in an ensemble classifier does result in increased classification accuracy. The overall suitability of this ensemble classifier depends on the memory and computational complexities of the constituent base classifiers. VI In this thesis, a newly reported and highly cited face recognition algorithm Laplacianfaces is initially explored for its true potential by varying its internal and external parameters for different face recognition tasks. Based on the outcome of this initial analysis, other famous subspace face recognition algorithms are also evaluated by using distance metrics both from the image space and mahalanobis space. This evaluation was performed by using the evaluation methodology employed in Face Recognition Vendor Tests (FRVT) and FERET evaluations. These algorithms are evaluated against various probe sets from three different and famous facial databases namely FERET, ORL and YALE. This study hence provides enough testing variables to judge the performance of algorithms against different imaging conditions or facial variations. Based on this exhaustive comparative analysis, a group of six most accurate and most economical classifiers are selected. Ensemble classifiers with combinations ranging from two to six of these best selected base classifiers are evaluated against the same testing conditions. The ensemble classifiers are constructed by combining base classifiers using two simple ensembling techniques namely re-ranking and weighted scoring approach. The average performance of this ensemble classifier also called unified classifier is found to be well ahead of that for the individual constituent base classifiers. The work reported in this study proves the effectiveness of ensemble classifiers for face recognition tasks. The results of the proposed unified classifier in comparison to the best performing subspace algorithms demonstrate that the unified classifier has a global performance and can handle different variations effectively.