Search or add a thesis

Advanced Search (Beta)
Home > Empirical Testing of Influence Behavioral Biases on Investor, S Decision

Empirical Testing of Influence Behavioral Biases on Investor, S Decision

Thesis Info

Author

Saqib Aziz Bajwa

Supervisor

Khalid Sohail

Department

Department of Management Sciences

Program

MBA

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2014

Thesis Completion Status

Completed

Subject

Management Sciences

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720505183

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ڈاکٹر شوقی ضیف

ڈاکٹر شوقی ضیف
۱۴، ۱۵؍ مارچ ۲۰۰۵؁ء کو شعبہ عربی علی گڑہ مسلم یونیورسٹی میں ’’دوسری جنگ عظیم‘‘ کے بعد ’’عربی ادب کے نئے رجحانات‘‘ کے عنوان سے ایک نیشنل سمینار ہوا جس کی روداد اپریل کے معارف میں شایع ہوچکی ہے، اس کے لیے راقم نے ’’ڈاکٹر شوقی ضیف: افضل العلما مولانا محمد یوسف کو کن کی نظر میں‘‘ کے عنوان سے مضمون لکھا تھا جس کو ۱۵؍ مارچ کو سمینار کے صبح کے اجلاس میں پڑھا، اسی روز شام کو پہلا اجلاس پروفیسر سلیمان اشرف (دہلی) کی صدارت میں شروع ہوا تو انہوں نے یہ افسوسناک اطلاع دی کہ ابھی خبر ملی ہے کہ ۱۱؍ مارچ بہ روز جمعہ ڈاکٹر شوقی ضیف کا انتقال ہوگیا، اسی وقت تاثراتی تقریریں ہوئیں، تعزیتی تجویز منظور کی گئی اور ڈاکٹر صاحب کے لیے دعائے مغفرت کی گئی۔
سمینار کے مندوبین کو شعبہ کی جانب سے جو کتابیں دی گئی تھیں ان میں ’’مجلۃ المجمع العلمی الہندی‘‘ کاتیئیسواں شمارہ بھی تھا، اتفاق سے اس میں بھی ڈاکٹر صاحب پر ایک مقالہ شامل تھا، اس سے اپنے مضمون میں کسی قدر اضافہ کر کے معارف کے قاریین کی خدمت میں پیش کررہا ہوں۔
ڈاکٹر شوقی ضیف بیسویں صدی کے عربی زبان کے مشہور مصنف اور بلند پایہ محقق و نقاد تھے، وہ جنوری ۱۹۱۰؁ء میں مصر کے ایک گاؤں ’’اولاد حمام‘‘ میں پیدا ہوئے، ان سے پہلے ان کے دو بڑے بھائی ایام شیر خوارگی ہی میں فوت ہوگئے تھے، اس لیے جب یہ پیدا ہوئے تو ان کے والدین کو بڑی خوشی ہوئی۔
ڈاکٹر صاحب کا پورا نام احمد شوقی عبدالسلام ضیف تھا، ضیف ان کے خاندان کا لقب اور عبدالسلام والد کا نام تھا، ان کا اصلی نام احمد شوقی تھا مگر وہ اختصار کے خیال سے اپنے کو صرف شوقی ضیف لکھتے تھے، یہی ان...

سیرت طیبہ کے تناظر میں منصبی ذمے داریاں اور تقاضا ہائے حقوق مصطفی

 Rights of Holy Prophet Muḥammad (P.B.U.H) have been studied from various perspectives. This paper reviewing the extant research on the subject; identifies the duties of government officials from the referred side. It concludes that Prophet Muḥammad (P.B.U.H) is the most benefactor and humanitarian to mankind in the word. In this context only those Govt. Officials can be considered true in their claim of love for Prophet Muḥammad (P.B.U.H) who adhere to his teachings, concerning ability of one’s position, piety, liability, morality and uprightness and those who refrain from being footloose and profligate, and free themselves from the hunger of wealth and status, censoriously evaluate their deeds, keep an eye on the life hereafter and accountability. Moreover, those who hold justice and avoid dishonesty and bias are true according to the teachings of Islam. Without such qualities and characteristics claim of love is just deceit and forgery.

Automated Test Data Generation for Model Transformation Testing

Models and their automated transformations play a critical role in Model Driven Engineering (MDE). A significant challenge in testing model transformations is the automated generation of input test models. This involves generating meta-model instances that satisfy constraints defined on the meta-model which includes the constraints on metaelements and the multiplicity constraints. The problem becomes more challenging when the goal is to generate test models that cover specific paths of the transformation code - a common task in structural testing. The thesis proposes a novel search-based test model generation approach for structural testing of model transformations. The approach generates test models to achieve the desired structural coverage of the transformation code. The proposed test model generation strategy considers the constraints specified at the meta-model level and the multiplicity cardinalities of relationships between meta-elements to guide the generation of valid instances of the meta-model. The proposed strategy relies on a fitness function that utilizes the approach level and branch distance to generate instances that can cover the target branch of the transformation code. The approach proposes a number of heuristics as branch distance functions that solve model transformation predicates. A tool Model Transformation Testing Environment (Motter) is developed that automates the proposed approach. Motter takes the source and input meta-models as input and generates instances of test model that provide the required code coverage, for example, branch coverage of the model transformation code. The current implementation of the tool supports two widely used transformation languages, Atlas Transformation Language (ATL) and MOFScript. The thesis empirically evaluates the proposed approach on two transformations case studies, which are implemented in ATL and MOFScript. The case study in ATL is the popular benchmark Class2RDBMS model-to-model transformation case study, and the case study in MOFScript is a model-to-text industrial scale Real-Time Embedded Systems Test Simulation (RTES) code generator. For the empirical evaluation, four different widely search heuristics: Genetic Algorithm (GA), (1+1) Evolutionary Strategy/Algorithm (EA), Alternative Variable Method (AVM), and Random Search (RS) are tested in the comparative study. The result of the empirical evaluation shows that the proposed approach is successful in achieving the desired branch coverage for the selected transformation case studies and that the AVM significantly outperforms other algorithms. AVM has shown promising results in studies focusing on constraints solving, however it has not been used before for the generation of test cases to provide structural testing of model transformations. The result achieved by the AVM in the experiments are aligned with its previously reported performance as it successfully generates test cases and outperforms other algorithms in terms of the number of branches it can cover for both the case studies.