Search or add a thesis

Advanced Search (Beta)
Home > Impact of Abusive Supervision on Employee, S Organizational Citizenship Behavior: the Mediating Role of Leader Member Exchange Lmx

Impact of Abusive Supervision on Employee, S Organizational Citizenship Behavior: the Mediating Role of Leader Member Exchange Lmx

Thesis Info

Author

Rida Abbasi

Supervisor

Muhammad Majid Khan

Department

Department of Management Sciences

Program

RMS

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2017

Thesis Completion Status

Completed

Subject

Management Sciences

Language

English

Added

2021-02-17 19:49:13

Modified

2023-02-17 21:08:06

ARI ID

1676720532016

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اثر صہبائی

اثرؔ صہبائی (۱۹۰۱۔۱۹۶۱ء) کا اصل نام خواجہ عبد السمیع پال تھا۔ اثر ؔسیالکوٹ میں پیدا ہوئے۔ اثرؔ کے بزرگوں نے کشمیر سے ہجرت کی تھی اور سیالکوٹ میں آباد ہوئے تھے۔ آپ نے گورنمنٹ کالج لاہور سے ایم۔ اے فلسفہ اور ایل ایل بی کیا۔ ۱۹۳۱ء میں ان کی رفیقہ حیات ان سے جدا ہو گئیں تو افسردگی ‘ تاریکی اور مایوسی کے بادل ان کی زندگی پر چھا گئے۔ ۱۹۳۴ء میں آپ اس غم و اندوہ کی یورش سے گھبرا کر سری نگر کشمیر چلے گئے۔ کشمیر میں ان دنوں ادبی مجلسیں اور ادبی نشستیں ہو رہی تھیں جن میں ڈاکٹر عبد الحکیم‘ نواب جعفر خان اثر لکھنوی‘ ڈاکٹر تاثیر اور پنڈت برج موہن دتاتر یہ کیفی دہلوی جیسے شعراء و ادبا شرکت کرتے تھے۔ اثر ان ادبی محفلوں کے روح رواں ہوتے تھے۔ آپ نے کشمیر ہائی کورٹ میں قائد اعظم کے ساتھ جونیئر وکیل کی حیثیت سے بھی کام کیا۔ قائد اعظم نے مقدمہ جیتنے کے بعد صہبائی کی محنت کو سراہا۔ (۳۵۰)

اثرؔ صہبائی کی پہلی تصنیف ’’جامِ صہبائی‘‘ ہے۔ قطعات و رباعیات پر مشتمل یہ شعری مجموعہ ۱۹۲۸ء میں دارالتالیف بیڈن روڈ لاہور سے طبع ہوا۔

’’خمستان‘ اثر کا دوسرا مجموعہ کلام ہے جو غزلوں‘ نظموں‘ قطعات و رباعیات اور متفرق اشعار پر مشتمل ہے۔ اس کا پہلا ایڈیشن ۱۹۳۳ء میں آزاد بک ڈپو سیالکوٹ سے شائع ہوا۔ اثر ؔکا تیسرا شعری مجموعہ ’’جامِ طہور‘‘ ۱۹۳۷ء کو تاج کمپنی لمیٹڈ لاہور نے طبع کیا۔ اس مجموعے میں رباعیات اور قطعات ہیں۔ ’’راحت کدہ‘‘ اثر ؔکا چوتھا شعری مجموعہ ہے جو ۱۹۴۲ء میں تاج کمپنی لمیٹڈ لاہور کے زیر اہتمام طبع ہو کر شائع ہوا۔’’ راحت کدہ ‘‘حضرت اثر صہبائی کے اس کلام پر مشتمل ہے جو انہوں نے اپنی جواں مرگ رفیقہ حیات راحت کی موت سے متاثر ہو کر مختلف اوقات میں...

ختم نبوت تورات و انجیل کى تعلیمات کى روشنى میں

Seal of Prophet-hood (Khatam-e-Nabuwat) is one of the critical issues which Islam has particularly emphasized to such a degree that a person cannot enter in the fold of Islam or may remain a Muslim without it. People, who believed in Torah & Gospel also believed that a prophet of mercy will descend with clear signs of prophet-hood. He will lead the world and guide them to the righteous path and will disclose the changes in Gospel. They also believed that the Prophet Muhammad (PBUH) will reveal the prophet-hood of Jesus and confirm that Jesus is a man of Allah with bestowed miracles. The world knows that the complete code of life after Moses was given only to the last Prophet Muhammad (PBUH). The prophet-hood has been sealed with Hazrat Muhammad (PBUH) is proven from Holy Quran as well as from Torah & Gospel. Torah & Gospel openly declare the prophet-hood of Hazrat Muhammad (PBUH) as “The Stone of Corner”. So the Holy Prophet (PBUH) himself announced the seal of his prophet-hood which none of the prophets of Bani Israel claimed in their lives. The prophet Jesus (A.S) also made efforts to clarify this point in front of his followers through several parables. These parables openly depict the authenticity of Islam and Hazrat Muhammad (PBUH) being the seal of prophets. This article provides information regarding predictions about Hazrat Muhammad (PBUH) as the last and final of the prophets of Allah Almighty, through Old & New Testaments as justified by Holy Quran. It also explains the status and value of the belief of “Finality of Prophet-hood” according to the Islamic teachings.

Sentiment Analysis for Sindhi Text

Sentiment analysis is basically opinion mining or emotion analysis. Many people express their views and sentiments through verbal, non-verbal and written forms to show their opinions and emotions on products, personalities, tourist places, educational institutions, hospitals, historical places, government, restaurants etc. A number of organizations are planning and concentrating on views and opinions of people to get some useful information. The social media, public and private sector organizations websites, web pages, blogs and online surveys are the important sources for getting opinions and reviews of people, thus, word wide web is best source of generating such types of data. Sentiment analysis, review analysis, emotion detection and opinion mining are procedures of analysing the unstructured or structured data for the purpose of evaluation of sentiments and opinions. Sentiments show the scale or level of confidence for positive opinion, negative opinion or neutral opinion or sentiments. Today, sentiments and opinions or reviews evaluation are one of the significant attentions of Natural Languages Processing generally called NLP. Majority of computational linguistics and sentiment analysis etc. software applications are existing for English and some other languages, nonetheless, numerous languages are there which cannot meet the level and category of these types of languages. Though, research studies and tools development processes are in growth for the languages, which are not resourced languages yet. The Sindhi language is an Asian language, which may be called the morphologically rich language, nevertheless, it faces several complexities since evaluating and analysing the online or offline text. Though, lots of data are available online or offline in different forms but yet no appropriate research study or work has discovered in the field of NLP as well as on sentiment analysis for Sindhi language text particularly. The deficiency of development work and research studies as well as technical resources for Sindhi language make the current research work or study interesting and challenging. Viewing and assessing this challenge, we have taken this task to work more to address the problems of Sindhi language data. Therefore, we have focused the construction of text corpus, data set, sentiment analysis system, word tokenization, part of speech tagging as well as subjective lexicon assessment for Sindhi language text. Supporting tools such as Sindhi POS tagger helps in identifying sentiments from Sindhi text corpus. This study has developed the NLP resources including sentiment analysis resources for Sindhi language text. Separate text corpus and linguistic data sets are developed and analysed by machine learning and deep learning models. Machine learning models are trained with small sentiment-based Sindhi training data and large sentiment-based Sindhi training data. The results confirm the proper performance and execution of supervised machine learning models in form of extraction of appropriate sentiments. The sentiment analysis for Sindhi text is done on document-level sentiment analysis, product level and aspect level sentiment analysis. The leaning model is designed and developed for the purpose of sentiment evaluation and analysis for Sindhi language text. Neural network based LSTM model is used with multiple layers to evaluate and validate the sentiment based Sindhi language text and products feature based data set. Results of models confirm the significance of methodology by showing good sentiment analysis and opinion analysis on Sindhi language text. Research study contributes the Sindhi language plain text corpus, linguistics dataset, aspect-based sentiment analysis dataset to the fields of natural languages processing as well as computational linguistics. Sentiment analysis system, which is developed for the Sindhi text is significant and state-ofthe art work. The work places the Sindhi language for international research to explore the grammatical and morphological complexities, perform the information retrieving, language modelling, semantic and sentiment analysis, universal dependencies and unsupervised modelling for text analysis etc.