Search or add a thesis

Advanced Search (Beta)
Home > Influence of Emotional Inellgence on Employuee Service Performance in Bank of Azad Kashmir

Influence of Emotional Inellgence on Employuee Service Performance in Bank of Azad Kashmir

Thesis Info

Author

Syed Zain Abbas Bukhari

Supervisor

Rao Aamir

Department

Department of Management Sciences

Program

RPM

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2015

Thesis Completion Status

Completed

Subject

Management Sciences

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720570565

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

آئو وطن آباد کریں

آئو وطن آباد کر یں
نحمدہ ونصلی علی رسولہ الکریم امّا بعد فاعوذ بااللہ من الشیطن الرجیم
بسم اللہ الرحمن الرحیم
معزز اسا تذہ کرام اور میرے ہم مکتب ساتھیو!
آج مجھے جس موضوع پر اظہار خیال کرنا ہے وہ ہے:’’آؤوطن آباد کر یں‘‘
صدرِذی وقار!
وطن کی محبت ایمان سے ہے، وطن سے والہانہ عقیدت ایمان کا حصہ ہے، وطن ہے تو ہم ہیں ، وطن ہے تو ہمارا وجود قائم ہے، وطن کی خوشبو سے ہمارے دماغ معطر رہتے ہیں،وطن کے صحرودر یا ہمارا سرمایہ ہیں، وطن کے شجر وحجر ہمارا اثاثہ ہیں۔
محترم صدر!
اگر یہ الفاظ ہم دِل کی اتھاہ گہرائیوں سے کہتے ہیں، تو ہم قابلِ فخر ہیں، ہماری حیات کی ساعتیں قابلِ صد مبارکباد ہیں، ہمارے وطن کے بارے میں تصورات یقینا صائب ہیں، ہماری محبت واقعی وطن کے لیے حقیقی ہے، ہمارا خیال اپنی سرزمین کے لیے واقعی طلسماتی اور کرشماتی ہے۔
صدرِمحترم!
وطن سے محبت اور وطن کی آبادکاری دماغ کے سوچنے کانام ہیں، وطن کی تعمیر صرف زبان کے اظہار کا نام نہیں ،وطن کے گلشن کی تز ئین صرف جسم کی حرکات کا نام نہیں ، وطن سے محبت اور پیار صرف قول و قرار کانام نہیں۔
معزز سامعین!
وطن سے محبت کرنی ہے تو وطن کے افراد سے محبت کرنا ہوگی ، وطن کے در و دیوار سے محبت کرنا ہوگی ، وطن کے نقصان کو اپنا نقصان سمجھنا ہوگا ، وطن کے مفاد کو اپنے مفادات پر ترجیح دینا ہوگی ، وطن کی تعمیر میں لاثانی اور مثالی کردار ادا کرنا ہو گا کیوں کہ وطن ہی ہماری آن ہے، وطن سے ہماری شان ہے وطن ہے تو ہم ہیں وطن نہیں ہے تو ہم بھی نہیں ہیں کیونکہ یہی وطن ہی تو ہماری شناخت ہے۔
اقوام کے وجود...

PENDIDIKAN IPS BERBASIS KEARIFAN LOKAL DENGAN PENDEKATAN ETNOPEDAGOGY DITINJAU DARI PRESPEKTIF KURIKULUM

The personal social issues experienced by students in daily life are important studies in social studies education. The study of the role of the environment is very important in preserving local wisdom that is beginning to be abandoned by the younger generation, especially the students as a generation of gold who will continue the eastafet stick of development. The importance of a learning approach that is relevant to the situation of students, learning in accordance with the real world reality of students with ecological intelligence (Ekopedagogy) by exploring local wisdom that can be developed through social studies with the selection of contextual material, and meaningful for students to develop skills concern for the community, and place empathy as a form of positive attitudes towards environmental conservation based on local wisdom through the ecopedagogy approach. Keywords: social studies, local wisdom, ethnopedagogy

Harmonically S, M -Convex Functions and Related Inequalities

The theory developed about convex functions, arising from intuitive geometrical observations, may be readily applied to topics in real analysis and economics.Convexity is a simple and natural notion which can be traced back to Archimedes (circa 250 B.C.), in connection with his famous estimate of the value of π (using inscribed and circumscribed regular polygons). He noticed the important fact that the perimeter of a convex figure is smaller than the perimeter of any other convex figure surrounding it. In modern era, there occurs a rapid development in the theory of convex functions. There are sereval reasons behind it: firstly, many areas in modern analysis directly or indirectly involve the applications of convex functions; secondly, convex functions are closely related to the theory of inequalities and many important inequalities are consequences of the applications of convex functions (see [64, 47]). Inequalities play a important role in almost all fields of mathematics. Several applications of inequalities are found in various area of sciences such as, physical, natural, engineering sciences. In numerical analysis, inequalities play a main role in error estimates of different important integrals whom analytic solutions could not be found. In recent years, a number of authors have considered extensions/generalizations of convex functions in various aspects and also tried to build several relations like HemiteHadamard’s inequalities. We introduce different types of convexities and drive more general Hermite-Hadamard’s inequalities. Further, we derive Ostrowski, Hermite-Hadamard and Simpson, Fejer type inequalities. Also, we discuss applications of these classes such that we can estimate the integrals like Rab x ex n dx; Rab sin xnxdx for n ≥ 1 and a, b ∈ (0, ∞) etc without using numerical analysis. In first chapter, we give information about convex functions, Log-convex functions, Quasi-convex functions, (s, m)-convex functions in second sense and Preinvex functions. In second chapter, we consider the class of harmonically convex functions and investigate some relations between harmonically convex and classical convex functions. We define class of harmonically (s, m)-convex functions which unify the different harmonic convexities and establish Ostrowski, Hemite-Hadamard and Simpson, and Fejer type inequalities for this class of functions. In third chapter, we define the classes of the harmonically p-convex functions which is a generalization of convex functions and harmonically convex functions, and harmonically p-quasiconvex functions, and harmonically logarithmic p-convex functions. Further, we investigate relationship between harmonically p-convex, p-convex and classical convex functions. Also, we give a characterization about the relation between harmonically p-convex and harmonically convex functions. Finally, we establish Hermite-Hadamard type inequalities for harmonically p-convex functions, and inequalities for the product of harmonically p-convex functions, and inequalities for harmonically logarithmic p-convex functions. In fourth chapter, we define the class of p-preinvex functions which is generalization of preinvex and harmonically preinvex functions. We also define the notion of p-prequasiinvex and logarithmic p-preinvex functions. Moreovere, we establish Hermite-Hadamard type inequalities when the power of the absolute value of the derivative of the integrand is p-preinvex and we give results for product of two ppreinvex, and logarithmic p-preinvex functions, and Ostrowski’s type for the class of p-preinvex functions. In fifth chapter, we define harmonically (p, h, m)-preinvex functions which is generalization of harmonically preinvex functions such that preinvex and harmonically p-convex functions are its special cases. Next, we introduce the concept of harmonically logarithmic p-preinvex and harmonically p-quasipreinvex functions. Finally, we establish important and interesting results related to these classes of functions.