Search or add a thesis

Advanced Search (Beta)
Home > Binomial Option Pricing Model in Financial Mathematics

Binomial Option Pricing Model in Financial Mathematics

Thesis Info

Author

Tauseef Arshad

Supervisor

Aftab Khan

Department

Department of Mathematics

Program

BS

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2010

Thesis Completion Status

Completed

Subject

Mathematics

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720669466

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

عشقی الہاشمی

عشقی الہاشمی(۱۹۰۹ء ۔۱۹۸۳ء)کا اصل نام جعفر علی اور عشقیؔ تخلص کرتے تھے۔ عشقیؔ سیالکوٹ کے سادات نقوی خاندان میں ہوئے۔ آپ عربی فارسی میں خدا داد قابلیت رکھتے تھے اور علومِ شرقیہ کے بہترین اساتذہ میں شمار ہوتے تھے۔ عشقیؔ نے شاعری میں علی طالب الہٰ آباد ی اور لسان الہند مرزا ہادی عزیز لکھنوی سے فیض حاصل کیا۔ سیالکوٹ میں عشقیؔ کے بہت زیادہ شاگرد تھے۔ جنھوں نے اُردو شاعری میں اعلیٰ مقام حاصل کیا۔ اصغر سودائیؔ اور تابؔ اسلم جیسے کاملِ فن شعرا عشقیؔ کے تلمذ میں رہے۔(۴۵۶)

آپ نے مجلہ در’’نجف‘‘ میں بحیثیت مدیر معاون کام کیا۔ ’’شبابِ اردو‘‘ ،اور’’نوروز‘‘ کی ادارت بھی سنبھالی ۔اور امر تسر کے ہفت روزہ ’’مجلہ آرٹ‘‘ کے مدیر بھی رہے۔ (۴۵۷) ’’سر شک بہار‘‘ ،’’مطلع الانوار‘‘ ،’’سوزو ساز‘‘ ،’’سہا و سمن‘‘ اور ’’غزلستان‘‘ عشقیؔ کے چار شعری مجموعے ہیں۔’’العروض ‘‘تصنیف میں فنِ شاعری پر تنقید اور تبصرے شامل ہیں۔(۴۵۸)

عشقیؔ روایتی شاعر ہیں ان کے ہاں کوئی جدت نظر نہیں آتی۔ عشقی ؔ کے اسلوب پر دبستان دہلی اورلکھنو کے اثرات بھی دیکھے جا سکتے ہیں ۔ اُن کی غزلیات چھوٹی اور لمبی بحروں میں ہیں ۔شاعری میں قافیہ اور ردیف پر بہت زور دیتے ہیں ۔ان کی اکثر غزلیات کی طویل ردیفیں ہیں ایسا لگتا ہے جیسے وہ شاعری پر قافیہ اور ردیف کو فوقیت دیتے ہیں ۔ مذکورہ بالا خامیوں کے باوجود عشقیؔ کے ہاں آفاقی موضوعاتِ شاعری بھی موجود ہیں۔ اخلاقیات،رجائیت،قومیت،حقیقت پسندی،اصلاح ،عشقِ مجازی اور عشقِ حقیقی عشقیؔ کی شاعری کے اہم موضوعات ہیں اس حوالے سے نمونہ کلام ملاحظہ ہو:

قوم پر جب زوال آتا ہے

 

/نوجوان بے لگام ہوتے ہیں

 

1جن کو جینے کا...

POLA SOSIALISASI PERGURUAN TINGGI DALAM MENINGKATKAN JUMLAH PENERIMAAN MAHASISWA BARU PADA IAIN PALU

This article discusses the effectiveness of the new student admission socialization program on the decision of the prospective student to enroll in the State Islamic Institute (IAIN) Palu. The problem studied is How are the efforts of socialization of new student admissions applied at IAIN Palu? What is the most effective socialization attempt for student candidate's admission at IAIN Palu? This research uses survey research design combined with descriptive qualitative analysis model. Data collection using questionnaire method supported by interview and collecting a documentations. The results showed that the socialization efforts applied in IAIN Palu was by utilizing mass media and school visit. An effective efforts of socialization for introducing institutions to the public is unprogrammed in schedules, they used word to word (door to door) and publicity promotion. Nevertheless, regular programmed socialization models are held regularly every day before the admission of new students, usually used advertising and “personal selling” through visits to schools, is still quite effective. While the main consideration factor for enrolling in IAIN Palu is the availability of courses appropriate to their interests.

On Jensen’S and Related Inequalities

Inequalities are one of the most important instruments in many branches of mathe- matics such as functional analysis, theory of differential and integral equations, inter- polation theory, harmonic analysis, probability theory, etc. They are also useful in mechanics, physics and other sciences. A systematic study of inequalities was started in the classical book [31] and continued in [54, 55]. In the eighties and nineties of the last century an impetuous increase of interest in inequalities took place. One result of this fact was a great number of published books on inequalities (see e.g. [4, 5, 37, 39, 38]) and on their applications (see e.g. [2, 11]). Nowadays the theory of inequalities is still being intensively developed. This fact is confirmed by a great number of recent published books (see e.g. [6, 56]) and a huge number of articles on inequalities. Thus, the theory of inequalities may be regarded as an independent area of mathematics. This PhD thesis is devoted to special kind of inequalities, namely Jensen’s and some its related inequalities involving Hermite-Hadamard inequality, Hardy and its limit Polya-Knopp inequality. In the first chapter, called Introduction, some basic notions and results from theory of convex functions and theory of inequalities are being introduced along with classical results of convex functions. In the second chapter, The weighted Jensen’s Inequality for convex-concave anti- symmetric functions is proved and some applications are given. In the third chapter we have discussed the generalized form of Hermite-Hadamard inequality for integrable Convex functions. In the fourth chapter Some estimates of Hardy, strengthened Hardy-Knopp and multidimensional Hardy-Polya-Knopp type differences for p < 0 and 0 < p < 1 are calculated. In the fifth chapter we prove a new general one-dimensional inequality for convex functions and Hardy-Littlewood averages. Furthermore, we apply this result to unify and refine the so-called Boas’s inequality and the strengthened inequalities of the Hardy-Knopp-type, deriving their new refinements as special cases of the obtained general relation. In particular, we get new refinements of strengthened versions of the well-known Hardy and P ́olya-Knopp’s inequalities, while in the last chapter some measures of divergences between vectors in a convex set of n−dimensional real vector space are defined in terms of certain types of entropy functions, and their log-convexity properties with some applications in Information theory are discussed.