Search or add a thesis

Advanced Search (Beta)
Home > Data Quality and Reliability in Measures

Data Quality and Reliability in Measures

Thesis Info

Author

Umair Umer

Supervisor

Noor Muhammad Larik

Department

Department of Mathematics

Program

BS

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2008

Thesis Completion Status

Completed

Subject

Mathematics

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720677103

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

محمد فاروق نعمانی

محمد فاروق نعمانی
افسوس ہے کہ ۲۶ و ۲۷؍ اپریل کی درمیانی شب میں جناب محمد فاروق نعمانی نے الٰہ آباد میں داعی اجل کو لبیک کہا، وہ مولانا شبلی کے برادر زادہ اور مولوی محمد اسحق صاحب وکیل ہائی کورٹ کے صاحبزادے تھے، جو اعظم گڑھ میں مولانا کے علمی و تعلیمی اور خاندانی جائداد اور زمینداری کے کاموں میں ان کے خاص دست و بازو تھے، ان کے انتقال پر مولانا نے ایسا پُر درد مرثیہ لکھا جو اردو کی عزائیہ شاعری میں بے مثال ہے، فاروق صاحب اس وقت کم سن تھے، اس کی طرف مولانا نے اس شعر میں اشارہ کیا ہے۔ ؂
لاڈلے ہیں کہ کسی اور کے بس کے بھی نہیں
اس کے بچے ابھی سات آٹھ برس کے بھی نہیں
فاروق صاحب شبلی کالج کے پرجوش اور سرگرم ممبر تھے، دارالمصنفین سے بھی ان کو گہرا اور جذباتی تعلق تھا، یہاں کی دعوتوں اور مجلسوں میں شریک رہتے، صوم و صلوٰۃ کے پابند تھے، لاگ لپیٹ ان کو نہیں آتا تھا۔ اﷲ تعالیٰ مغفرت فرمائے اور پس ماندگان کو صبر جمیل عطا کرے، آمین۔ (ضیاء الدین اصلاحی۔ مئی ۱۹۹۷ء)

 

”غض بصر“ کا اطلاقی پہلو قرآن و حدیث کی روشنی میں

In 20’ century, everywhere in the world there is Muslim majority playing importa nt role in world, because it was over served and counted that every fifth man is Muslim. It is also a challenges for non-Muslim who are master of worldtche European land is the land of modernization, there are about in million Muslims. In America there are also over a thousand marques and Islamic organizations. Islam is creating Islamic world in central Asia. After disintegration n of USSR iii DS state such as Kaz, akhstan, Kyrg yzstan, Uzf›ekistan, Turkmenistan and Tajikistan. In fact Islam ii iR second religion most predominate religion after catholic. In Britain ñfuifims are demanding Islamic education. The sfnmic society strength the powerful secufarism in capitalist’s work and trended society as modern. The Muslims are model of world they base on Eurocentric social, politest, economic and cultural premises, progress, modernizing, traditions, secularities, liberalism, humanity and freedom. The Islamic political and social society stand in 7" century, the y believe iii God and red Quran, Islam separated religion from politics and brought peace for all as secular. Muslim are present and living according the teaching of Islam and playing important role in international world politics or international relations. Furthermore, the wars, nationalism, nation, states and human rights in all Islam impact is very much concert The politics, economic, social concern as religion n terminology y or image, more ever universal issues such as social justice, local legitimating and defending the home land are lies on the Islamic politics. The interest in religion and culture are the important factors in international relations.

On Exact Solutions of Some Nonlinear Partial Differential Equations of Integer and Fractional Order

One of the major consequences of mathematical modeling is nonlinear partial differential equations (NLPDEs). They can be used to analyze and predict the characteristics of many nonlinear real-life phenomena, such as acoustic waves, heat transfer, wave propagation, plasma fluid flow, and diffusion processes, etc. Exact solutions of these NLPDEs gives us the means required to simulate and predict the relevant nonlinear real-life phenomena. Recently, a class of exact solutions (known as soliton solutions) has gained considerable attention due to the potential in mimicking real-life solitary waves. As these types of waves are a very important part of wave propagation in different media, this attention is justified. In this work, we have considered a number of NLPDEs and nonlinear fractional partial differential equations (NLFPDEs) representing certain real-life problems. We have worked out their exact soliton solutions by employing certain mathematical techniques, such as the Generalized Kudryashov Method, Exponential Rational Function Method, Modified Exponential Rational Function Method, (?′ ?2 )-Expansion Method, Auxiliary Equation Method, Khater method, and Generalized Riccati equation mapping method, etc. We have applied these methods to obtain exact solitary wave solutions to a number of NLPDEs and NLFPDEs, such as, NLPDEs representing the van der Waals normal form for fluidized granular matter, the space-time fractional Klein-Gordon equation, space-time fractional Whitham-Broer-Kaup (WBK) equation, time fractional Hirota-Satsuma Coupled Korteweg-de Vries (HSC KdV) equation, (3+1)-dimensional time fractional KdVZakharov-Kuznetsov (KdV-ZK) equation, space-time fractional Boussinesq equation, space-time fractional (2+1)-dimensional breaking soliton equations, space-time fractional Symmetric Regularized Long Wave (SRLW) equation, time fractional (2+1)-dimensional nonlinear Zoomeron equation, space-time fractional Sharma-Tasso-Olver (STO) equation, time fractional Kaup-Kupershmidt (KK) equation, space-time fractional coupled Burgers equations, space-time fractional Zakharov Kuznetsov Benjamin-Bona-Mahony (ZKBBM) equation, ill-posed Boussinesq equation, Nonlinear Longitudinal Wave (NLW) equation, time fractional Sharma-Tasso-Olver (STO) equation and conformable Caudrey-DoddGibbon (CDG) equation. These introduce us to several types of solitary wave solutions like soliton, singular soliton, kink wave, periodic wave, singular kink wave, multiple-soliton wave, multiple periodic solutions, bell-shaped soliton solutions, bright-dark soliton, nontopological (bright) soliton solutions, topological (dark) soliton solutions, cusp-like singular soliton, hyperbolic, trigonometric, exponential and rational solutions. These methods include the use of certain transformations, which transform the given partial differential equation into an ordinary differential equation. For nonlinear fractional partial differential equations (NLFPDEs), an analogous reduction has been achieved by using fractional complex transformations. Besides these suitable transformations, many other strategies have also been used to get exact solutions to the NLPDEs or NLFPDEs at hand. These include using appropriate balancing principles and computer algebra systems such as MAPLE and MATHEMATICA. We have focused on finding methods which could give us such exact solutions which have not been reported yet. Or, even if they have been reported, we have tried to find a more general form of these solutions. To achieve that goal, besides using the already existing techniques, we have also modified the existing methods to hopefully find more general solutions. After the computation of these exact solutions, we have verified them by plugging them back into their respective differential equations. They are found to satisfy their respective differential equation exactly and their solitary wave behavior is captured with the help of graphical simulation.