روٹی سمجھ چنگیر والی چن ہو گئی
تھگڑی سو جو نال بدن ہو گئی
لگا عشق میں رن پرنا آندی
اگوں بالاں دی ادھی درجن ہو گئی
پردہ مکھ توں الٹیا جس ویلے
جھلک چودھویں دا ہک چن ہپو گئی
یونیورسٹی دی کڑی پرنا آندی
مکلاوا آندیاں سار ان بن ہو گئی
ترلے کرنا ایں کیوں وڈیریاں دے
ایڈی وڈی کہیڑی تینوں بھن ہو گئی
روندا آیا ایں تے روندا ٹر جاسیں
دنیا کتھوں ایہہ تیری سجن ہو گئی
بیوی لڑدی رہندی سی نال میرے
دتا خرچہ تے اوہ مکھن ہو گئی
پایا سوہنیاں نے صرف اک پھیرا
رونق ویکھ وچ کیویں چمن ہو گئی
دنیا مال نہ دولت کم کسے
دولت عمل دی نال کفن ہو گئی
والضحیٰ چہرہ والیل زلفاں
رحم دلی وی سنگ بدن ہو گئی
پنجابی لکھنا بولنا گھٹ ہویا
لگ دا پیا اے بے وطن ہو گئی
بچہ اپنا ہی سوہنا لگ دا اے
لگے سوہنی پرائی جو رن ہو گئی
تناں شئیاں توں اصل وچ ھین جھگڑے
زر، زمین تے تیسری زن ہو گئی
Imam Khattabi is considered as a glorious scholar of the fourth century. He has written several books in various scholarly traditions. One of them an important book is "Ghareeb ul Hadith". In this, he has not only interpreted the difficult words but also referred to as Ayaat, Ahadith and verses etc. Then, he also described the jurisprudential commandments existed in these Ayaat and Ahadith. Furthermore, in many places, hadith terms, legal maxims and wisdom of law are also part of this book. This book also holds a significant correlation with knowledge of Imam Khattabi's teachers because he mentioned the ahadith and sayings of scholars with his own chain. Due to these qualities of this book, not only did the scholars of language use it, but also magnificent mohaddiseen, jurists, explainers and researchers have also quoted it in their own books. Of course, it will not be unwise to say that like previous scholars and mohaddiseen this book is also important and need for today's scholars.
Online customer reviews have become electronic word of mouth for the current generations. The product reviews play an important role in customer‘s purchase decision making process. However, there are thousands of reviews constantly being posted for online products on e-commerce websites. It is very difficult for buyers to read all the reviews before purchase decisions. Review helpfulness is attracting increasing attention of practitioners and academics. It helps in reducing risks and uncertainty faced by users in online shopping. In this dissertation, three solutions are proposed to develop an effective model for review helpfulness prediction. i.e. 1) Influences of discrete emotions embedded in review text on review helpfulness are investigated, 2) Review helpfulness as a function of linguistic, psychological, summary language, and reviewer features is examined, and 3) Significant product, review and reviewer characteristics are explored to determine the review helpfulness. For discrete emotions, an algorithm is presented that extracts four positive and four negative discrete emotions from review text using National Research Council (NRC) emotion lexicon. An effective helpfulness prediction model is build using deep neural network. The findings reveal that Trust, Joy and Anticipation (positive emotions); Anxiety and Sadness (negative emotions) are most influential emotion dimensions and have greater impact on perceived helpfulness. Secondly, the utility of linguistic, psychological, summary language and reviewer characteristics are investigated and an effective review helpfulness prediction model is constructed using stochastic gradient boosting algorithm. The results reveal that reviewer helpfulness per day and syllables in review text strongly relates to review helpfulness. Moreover, the number of space, aux verb, drives words in review text and productivity score of a reviewer are also effective predictors of review helpfulness. Thirdly, influences of important variables by exploring not only the review content indicators but also significant indicators of reviewer and product that contribute to review helpfulness are explored. The influence of product type (search and experience goods) on review helpfulness is also examined and reviews of search goods show strong relationship to review helpfulness. The findings indicate that polarity of review title, sentiment and polarity of review text and cosine similarity between review text and product title effectively contribute to the helpfulness of online reviews.