Search or add a thesis

Advanced Search (Beta)
Home > Fabrication and Characterization of Melanin Blended Nanosparticles Thin Films for Advanced Energy Applications

Fabrication and Characterization of Melanin Blended Nanosparticles Thin Films for Advanced Energy Applications

Thesis Info

Author

Muhammad Saad

Supervisor

Mushtaq Ali

Department

Department of Physics

Program

RPH

Institute

COMSATS University Islamabad

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completion Status

Completed

Subject

Physics

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676720844195

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

رشید احمد صدیقی

پروفیسر رشید احمد صدیقی کے قلب اور ذہن پر اقبال کے فکر و فلسفہ کا گہرا اثر دکھائی دیتا ہے دونوں کی باہم مراسلت بھی اس بات کا منہ بولتا ثبوت ہے کہ دونوں کے تعلقات بھی بہت گہرے تھے۔ اقبال گھریلو معاملات میں بھی رشید احمد صدیقی سے مشاورت کیا کرتے تھے۔ ان تعلقات کی جھلک دیکھنی ہوتو اقبال کے کئی خطوط ایسے ملیں گے جو رشید احمد صدیقی کے نام لکھے ہوں گے۔
پروفیسر عبد الحق نے رشید احمد صدیقی کا ثقافتی منظر نامہ ترتیب دیا ہے۔ صد سالہ جشن رشید کے موقع پر آپ نے دہلی یونیورسٹی میں ہونے والے ایک مذاکرے میں” رشید احمد صدیقی :افکار و اسالیب" کے عنوان سے جو مقالہ پڑھا وہ بہت پسند کیا گیا۔ آپ نے اس میں مزید اضافہ کیا۔ کچھ خطوط شامل کیے اور اس طرح ایک مکمل ترین عمدہ تصنیف سامنے آگئی۔ اس تصنیف میں جگہ جگہ اقبال کا ذکر پایا جاتا ہے۔ یہی وجہ ہے کہ پروفیسر عبد الحق نے رشید احمد صدیقی کی اقبال شناسی کے پہلو بھی نظر انداز نہیں کیے اور خود بھی عمدہ ترین تحقیق اور تنقید سے کام لے کر بہت اچھی تخلیق سامنے لائے ہیں۔ اس تصنیف کے موضوعات کا انفرادی جائزہ لیتے ہیں۔

CORRELATION OF MYOFASCIAL TRIGGER POINTS WITH UPPER LIMB DISABILITY IN POST MASTECTOMY FEMALES IN PAKISTAN

Aims of Study: The objective was to correlate myofascial trigger points and upper limb disability in post-mastectomy females. Methodology: This six-month duration study included 45 participants aged 18 or older, using non-probability convenience sampling, who had undergone mastectomy at least six months prior. Numeric pain rating scale, Simon’s trigger point criteria and a disability questionnaire were used to assess disease complications. Results: A study involving 45 female participants (mean age 42.8±6.754) found that 33.3% had mild pain, 55.6% had moderate pain, and 11.1% had severe pain. Additionally, 46.7% had mild disability and 53.3% had moderate disability. There was a significant correlation between myofascial trigger points and upper extremity disability. Limitations and Future Implication: The limitations include the small sample size used in study and limited generalization of findings due to cultural and contextual factors. Further research is needed to explore interventions and understand the long-term impact of myofascial trigger points on upper limb function. Originality: This research is original in its focus on the correlation between myofascial trigger points and post-mastectomy upper limb disability. Conclusion: This study concluded that there is a highly significant relation between trigger points in muscles and disability of upper extremity in female patients after mastectomy.

Abnormality Detection in Musculoskeletal Radiographs

We build a machine learning model that is able to detect abnormalities in X-ray images. We use the MURA dataset released by Stanford University in 2017 to train and evaluate our model. The dataset contains a total of 14,656 multi-view X-ray studies labeled as either normal or abnormal by professional radiologists. We train a binary Convolutional Neural Network classifier on this dataset and employ Class Activation Mappings to localize the abnormality on the X-ray image if found. Our model, an ensemble of DenseNet169 and ResNet50, obtains an accuracy of 0.844 and an AUROC of 0.836 on the test set. In this paper, we describe the methodologies that we used to train and evaluate the model and to extend the classifier into a detector