ماحصل
بیسویں صدی کے پہلے عشرے میں ہی عالمگیر تبدیلیوں کے زیر اثر اردو زبان و ادب میں شعری شعور ایک منفرد اور نئے رجحان میں داخل ہو چکا تھا۔ جس کے دھندلے خطوط ۶۰ کی دہائی میں واضح نقوش اختیار کر کے ایک عام آدمی کے لئے بھی جیتی جاگتی تصویر دکھائی دینے لگے۔ زندگی میں تبدیلی کا راست اثر ادب پر بھی پڑتا ہے جو نمائندہ شخصیات کی تخلیقی جدوجہد کا نتیجہ ہوتی ہیں۔ یہ تبدیلی کا عمل بڑی شخصیات کے قلب میں جنم لیتا ہے جو اپنے الفاظ کی اثر آفریبی سے مروجہ سوچ پر غالب آجاتا ہے۔ بڑی شخصیات کو زمان و مکان کی حدود و قیود میں مقید کرنا محال ہو جاتا ہے۔ ایسی شخصیات کی تخلیقی جدوجہد کی پیمائش گھڑیوں ، مہینوں اور سالوں کے معیارات سے ممکن نہیں ہوتی۔ ایسی ہی ایک قد آور اور پر اثر شخصیت مراتب اختر کے نام سے ساٹھ اور ستر کی دہائی میں اردو ادب کے شعری افق پر نمودار ہوئی اور اپنے جذبوں کی ہمہ رنگ قوس قزح کی روشنیاں بکھیر گئی۔ اس منفرد شاعر کی منفرد شاعری کا مقام و مرتبہ تو آئندہ تاریخی تناظر میں ہی ہو گا جس کو طے کرنا نقاد حضرات کا ہی کام ہے۔ لیکن اپنی تمام تر بے بصاعتی کے باوجود بڑے لوگوں کی آرا کو پیش کرنے کی سعادت اور ان کی شاعری کی عظمت کے تصویری خاکے اب بھی پیش کئے جا سکتے ہیں اور اس تصویر میں رنگ بھرنے کے لیے کسی بھی ناقد کو وسیع مطالعے کے ساتھ ساتھ طویل ذہنی سفر بھی کرنا پڑے گا تاکہ تصویر اپنے متعینہ چوکھٹے میں سج سکے۔ اس کی کچھ جھلک اور پرچھائیاں ان کے ہمسفر شعرا کی زبان ترجمان سے عیاں تو ہوتی ہیں مگر بشری محدودیتوں، باہمی عصبیتوں...
Background of the Study: The prevailing cause of Diabetes is a decline in insulin production, the outcome of which is an elevated glucose level in the blood. The superabundance of glucose in the blood can cause severe complications, damaging other body organs, including kidneys, nerves, heart, and upper and lower limbs. However, the common complication in diabetic patients is foot ulcer, which is directly associated with Diabetic peripheral neuropathy (DPN), which is the extensive cause of this. DPN is the inability of nerves to sense any external change, due to which the foot plantar pressure is altered and evolves because of the high glucose level.
Methodology: This paper provides a solution in the form of a portable and cost-effective device based on force sensors for diabetic patients to monitor the change in foot plantar pressure at home and overcome the risk of foot ulceration. The device is implemented on 30 participants to characterize the plantar pressure values with flat foot and normal foot types for the Control group and diabetic group.
Results: An evident difference in the value of Mid-foot pressure is observed for both the groups, Control group (Normal foot = 144+2.63 kPa, Flat foot = 150+2.72 kPa) and Diabetic Group (Normal foot = 213+2 kPa, Flat foot = 216+1 kPa). Deviation in these values discriminates the mid-foot pressure for the two groups, thus providing us a range for the individuals of the control group for the alarming situation.
Conclusion: Noticing the plantar pressure through the proposed device helps diabetes patients reduce their risk.
When we formulate a mixture like juice, medicine, food etc, we have very little knowledge about our final product. In mixture experiments the product is a mixture of several ingredients. So, we need to maximize the product performance by using the optimum proportions of the ingredients. Mixture experiments are very useful in handling such optimum proportions. We perform a mixture experiment to answer the questions raised about the finished product. The literature review of all types of optimal designs revealed that optimality could be achieved on the boundary of the simplex. Such optimal designs were constituted of binary blends, except the common centroid in each block. Hence the orthogonally blocked optimal mixture designs did not formulate a complete mixture. With the compromise on the efficiency of designs, nearly optimal orthogonally blocked mixture designs in three and four components were proposed for the Scheffé quadratic mixture model. We propose nearly D- , A- and E-optimal mixture designs for three and four components in two blocks, under Latin squares based orthogonal blocking scheme for Scheffé quadratic mixture model, quadratic K-model, Becker’s quadratic homogeneous models and for Darroch and Waller’s quadratic mixture model. The robustness of nearly D- A- and E- optimal designs for a particular value of shrinkage parameter s is observed. We have addressed the properties of D-optimal designs for five components in two orthogonal blocks, for Darroch and Waller’s quadratic mixture model, based upon Latin squares and F-squares orthogonal blocking schemes. In real life situation sometimes the total amount of the mixture also affects the response, say amount of fertilizers used. In existing literature D-optimal mixture component- amount designs, including blocks with orthogonal Latin squares and F-squares, were constructed by projection. Such designs in two and in three components were composed of binary mixture blends. The construction of nearly D-optimal mixture component-amount designs were not addressed with reference to F-squares based orthogonal blocking scheme. We construct F-squares based orthogonally blocked nearly D-optimal component-amount designs in two and three components from orthogonally blocked mixture component-amount designs obtained via projections of orthogonally blocked F-square designs. Recently in literature it was verified that when the initial (q-1)-dimensional unit spherical orthogonally blocked response surface designs (like Box Behnken and Central Composite Design) were transformed into a (q-1)-dimensional ellipsoidal restricted region, then the resulting q-component mixture designs were also orthogonally blocked. We have verified the same issue by using some other unit spherical orthogonally blocked designs as an initial response surface design. The idea of slope-rotatability in axial directions (SRIAD) and over all directions (SROAD) is mostly addressed in literature for different response surface designs. Not much work so far has been done for slope-rotatable designs in mixture experiments. We have derived the necessary and sufficient conditions for slope-rotatability in axial directions and over all directions for the quadratic K- model. Some new measures of Slope-Rotatability for unconstrained and constrained mixture regions are introduced, using Gini Mean Difference method. Further a measure of slope-rotatability over all directions is established for quadratic K- model. More on we have tried to compare different loss functions for Bayesian control in mixture models. Although the last two chapters do not use orthogonally blocked mixture designs but still carry some new research issues related to mixture experiments. Some research work from chapter three and chapter nine has been published.