Search or add a thesis

Advanced Search (Beta)
Home > A Power Efficient Data Volume Based-Mobile Data Collection Dv-Mdc in Wireless Sensor Networks Wsns

A Power Efficient Data Volume Based-Mobile Data Collection Dv-Mdc in Wireless Sensor Networks Wsns

Thesis Info

Access Option

External Link

Author

Syed Muhammad Abrar Akber

Institute

Virtual University of Pakistan

Institute Type

Public

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2015

Thesis Completion Status

Completed

Subject

Software Engineering

Language

English

Link

http://vspace.vu.edu.pk/detail.aspx?id=48

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676720953112

Similar


The Wireless Sensor Networks (WSNs) is a vast and widespread domain of computer networks. WSNs have appeared as one of the most attractive domain for the future research and are one of the most researched domains during the last decade. The WSNs have some inherent limitation like limited bandwidth and extreme energy constraint etc. These limitations challenge the research community to devise optimum operating environment for WSNs. Data gathering in WSNs is of prime importance considering these limitations and it is desirable to devise efficient schemes for data gathering. In order to optimize the operating environment of WSNs, the inherent limitations (limited bandwidth, extreme energy constraint, etc.) are required to be tackled efficiently. The data gathering and transmission operations of WSNs are major energy utilizers, hence these operations of WSNs are required to be optimized. In this research, a new scheme of data gathering for WSNs based upon the amount of data volume sensed by the sensors has been proposed. The sensors send a one bit beacon message to indicate the availability of sensed data in their buffer. DV-MDC exploits this fact and visits only those nodes which have generated some data during a particular round. Consequently, unnecessary visits to the nodes are avoided which leads to energy efficiency. The MDC visits only those sensors which had sensed the data and not the entire sensor field. The proposed data gathering scheme has been validated with the help of simulation. The simulation results show that DV-MDC offers better performance in terms of throughput and energy efficiency. The results are also validated by a comprehensive comparative analysis.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اردو کے نامور محققین (مولوی عبدالحق)

اردو کے نامور محققین(بابائے اردومولوی عبدالحق)
مولوی عبدا لحق برِ صغیر پاک ہند کے عظیم اردو مفکر، محقق، ماہر لسانیات، معلم، بانی انجمن ترقی اردو اور اردو کالج کے بانی تھے، ا?پ کو بابائے اردو کے لقب سے یاد کیا جاتا ہے۔آپ کی تاریخ پیدائش کے حوالے سے کافی اختلاف پایا جاتا ہے ،لیکن بقول ممتاز حسین مولوی عبدالحق 20 اپریل،1870ء کوبرطانوی ہندوستان کے ضلع میرٹھ کے ہاپوڑ کے قریب سراوہ نامی ایک گاؤں میں پیدا ہوئے۔مولوی عبدالحق نے ابتدائی تعلیم گھر پر ہوئی پھر میرٹھ میں پڑھتے رہے۔
بابائے اْردومولوی عبدالحق کو ابتدا ء ہی میں ریاضی سے گہرا لگاؤ تھا جس نے اْنہیں غور و فکر اور مشاہدے کا عادی بنا دیا۔اس کے علاوہ انہیں فارسی اور اْردو شاعری، نثرنگاری ،تاریخ ،فلسفہ اور مذہب کا مطالعہ کرنے کا بھی شوق تھا ان علوم اور ادب کے مطالعے نے مولوی عبدالحق? کے قلب و ذہن پر مثبت اثرات مرتب کئے انہیں اپنے اطراف سے گہری دلچسپی پیدا ہوئی۔
بابائے اْردو مولوی عبدالحق نے نہ صرف اْردو میں تنقید نگاری، مقدمہ نگاری اور معنویت عطا کی بلکہ اْردو میں پہلی بار حقیقی تبصرہ، جائزہ اور لسانی اکتساب صرف بابائے اْردو مولوی عبدالحق کی مقدمہ نگاری میں میسر آیا انہوں نے اْردو میں تبصرہ نگاری کو ایک نیا رنگ اور ڈھنگ عطا کیا۔جنوری 1902ء میں آل انڈیا محمڈن ایجوکیشن کانفرنس علی گڑھ کے تحت ایک علمی شعبہ قائم کیا گیا جس کانام انجمن ترقی اردو تھا۔ مولانا شبلی نعمانی اس کے سیکرٹری رہے تھے۔ عزیز مرزا کے بعد 1912ء میں مولوی عبدالحق سیکرٹری منتخب ہوئے جنھوں نے بہت جلد انجمن ترقی اردو کو ایک فعال ترین علمی ادارہ بنا دیا۔ مولوی عبدالحق اورنگ آباد (دکن ) میں ملازم تھے ،وہ انجمن کو اپنے ساتھ لے گئے اور اس طرح حیدر آباد دکن اس کا مرکز بن گیا۔

STRATEGI PENGUATAN PENDIDIKAN AGAMA PADA SEKOLAH ISLAM TERPADU

This study discusses the strategy of strengthening religious education in Qurrota A'yun Islamic Elementary School (SDIT) in Marawola Subdistrict, Sigi Regency, with the problem is how the model of religious education learning in Qurrota A'yun Islamic Elementary School (SDIT) in Marawola Subdistrict, Sigi Regency. What is the strategy of strengthening religious education in the Integrated Islamic Elementary School (SDIT) Qurrota A’yun Marawola District Sigi Regency. This study used qualitative research methods. The research results are a model of religious education learning in SDIT Qurrota A’yun is to implement an integrated curriculum, namely between religious and general subjects, where the curriculum is designed by integrating Islamic values ​​in learning activities. While the strategy of strengthening religious education at SDIT Qurrota A’yun was carried out in two activities namely learning and habituation. Learning activities are carried out through curricular learning and extracurricular learning.

Characterization and Classification of Heart Rate Signals Usning Linear and Nonlinear Time Series Analysis Techniques

The living organisms possess several types of rhythms interacting with each other and the outside dynamic environment, under the control of incalculable feedback systems performing orderly function to enable life. The alternations in the rhythms of physiological system help us to obtain information about the current state of living systems having substantial diagnostic value in context of human health and disease.The human body emits rhythmic alterations in form of recordable signals called biological signals which reflects the, characteristics, state, properties and the information about the physiological parameter such as heart, brain, muscles and genes etc. The large body published literature suggested that heart rate signals are most widely explored biological signals during last four decades. The electrocardiography (ECG) is used to detect abnormalities in the cardiac rhythms during the onset of cardiovascular problems. The rhythms of heart started to change long before the onset of disease, for which long term ambulatory ECG (AECG) recording is required. Therefore, 24 h or 48 h AECG monitoring is becoming vitally important for early detection of abnormal events to prevent onset cardiovascular disease and in various clinical settings. The variations in the beat-to-beat intervals called heart rate variability (HRV) reflects the cardiac autonomic control of the autonomic nervous system (ANS), via its sympathetic and parasympathetic branches. Reduced heart rate variability has been associated with the onset of pathological disturbances, aging and early warning signs of impending disease.During the last three decades, many linear and non-linear HRV analysis techniques have been proposed for the extraction of information from cardiac inter-beat interval time series data. In the recent past, few studies have been conducted to find the relation between heart rate (HR) and HRV. These studies either did not investigate the relationship between HR and HRV quantitatively or only considered linear HRV measures to find quantitative relationship between HR and linear HRV parameters. Under usual physiologic conditions, heart is not periodic oscillator, the linear HRV measures may fail to provide account for transient fluctuations in the RR-interval data. The nonlinear HRV measures have been used in numerous studies to account for transient fluctuations in the heart. The one direction of the study was to investigate the relationship of both linear and nonlinear HRV measures with HR. The result revealed inverse relationship between HRV metrics and HR for human and animal heart rate time series data. Recently, researchers proposed the idea of multiscaling for extracting information from biological signals and validated that biological signals provide dynamically incorrect information at single time scale. The second direction of the study was to assess, how multiscaling procedures affect the relationship between HRV parameters and heart rate. The results revealed inverse correlation between HR and HRV parameter at threshold values 1 to 5. Furthermore, the study focused on improving the classification ability of sign series descriptor acceleration change index (ACI) and proposed novel sign series measures for charactering the dynamics of healthy and pathological subjects. The dynamical information encoded in the interbeat interval time series was examined using scale based ACI measures (MACI and CMACI). The proposed scale base ACI measures were compared with ACI for assessing the computational performance. The ANOVA, Bonferroni post-hoc test, AUC, sensitivity, specificity, PPV, NPV, FDR, FOR and total accuracy were used for assessing the performance of ACI and scale based ACI for classifying healthy and pathological subjects. The results reported in the study depicted that scale based acceleration change index measures showed better classification between pathological and healthy groups at wide range of temporal scales.