Search or add a thesis

Advanced Search (Beta)
Home > Simplified Fdd Process Model

Simplified Fdd Process Model

Thesis Info

Access Option

External Link

Author

Zahid Nawaz

Institute

Virtual University of Pakistan

Institute Type

Public

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2017

Thesis Completion Status

Completed

Subject

Software Engineering

Language

English

Link

http://vspace.vu.edu.pk/detail.aspx?id=247

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676721005735

Similar


Feature driven development (FDD) is a process oriented and client centric agile software development model which develops a software according to client valued features. Like other agile models it also has adaptive and incremental nature to implement required functionality in short iterations. FDD mainly focuses on designing and building aspects of software development with more emphasis on quality. However less responsiveness to changing requirements, reliance on experienced staff and less appropriateness for small scale projects are the main problems. To overcome these problems a Simplified Feature Driven Development (SFDD) model is proposed in this research. In SFDD we have modified the phases of classical FDD for small to medium scale projects that can handle changing requirements with small teams in efficient and effective manner.
Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اہلیہ، مولانا محمد انور شاہ کشمیری

اہلیہ، مولانا محمد انور شاہ الکشمیری
حضرت الاستاذ مولانا محمد انور الکشمیری کے ہزاروں تلامذہ اورارادت مندوں کو جوبرصغیر میں پھیلے ہوئے ہیں، یہ معلوم کرکے بڑاملال ہوگا کہ حضرت موصوف کی اہلیہ جنھیں ہم سب’’اماں جی‘‘کہا کرتے تھے، جون کے آخری ہفتے میں داعی اجل کو لبیک کہہ کر اس خاکدان سے رخصت ہوگئیں۔ اناﷲ وانا الیہ راجعون۔
مرحومہ بڑی خوبیوں اوراعلیٰ صفات وکمال کی خاتون تھیں۔حضرت شاہ صاحب ایسے شوہر کی وفات کے بعد انھوں نے زندگی جس صبرورضا اوراستقلال و توکل کے ساتھ بسر کی ہے وہ انھی کاحصہ تھی۔کئی برس سے کینسر جیسے موذی مرض میں مبتلا تھیں۔سعادت مند اولاد نے بڑے سے بڑے علاج معالجہ میں کوئی کسر اٹھا کے نہیں رکھی لیکن وہ کینسر ہی کیا جس سے مریض جانبر ہوجائے۔اس مرض سے مرحومہ نے جوغیر معمولی تکلیف برداشت کی ہیں وہ یقینا ان کے لیے درجۂ شہادت کی ضامن ہیں۔ اپنی اولاد معنوی کے ساتھ وہی تعلق رکھتی تھیں جو خود حضرت الاستاذ کو تھا۔ان کانفس وجود ہم لوگوں کے لیے سرمایۂ خیروبرکت تھا۔ افسوس اب یہ بھی ختم ہوا۔ اﷲ تعالیٰ کروٹ کروٹ جنت نصیب فرمائے اور صدیقین اورشہداء کامقام عطا ہو۔آمین۔ [جولائی۱۹۶۷ء]

 

اسلامی نظام مالیات اور جدید نظام ہائے مالیات کا تقابلی جائزہ

Islam is a complete system of life to raise all aspects of human life and the guiding thought and action which offers a system according to the changing conditions of human actions that affect. Up until then, it will not be possible to regulate the texts should not be considered deeply profound to contemplate the Holy Quran "jurisprudence" word is used. Islamic Finance in respect of any individual earning a living is not completely confined (like communism) or full independent (like capitalism), but the income in the struggle meant that the economy was bound by the rules the life of the individual and the protection of irregular economic Charities (Rifāhy) also adhere with religious and moral exaltation, is always in the pursuit of individual economic will be tow rule: First, they get the "halal" is. Secondly, the ways they acquire "Tayyab".

Prediction of Membrane Proteins Using Machine Learning Approaches

Membrane proteins are the basic constituent of a cell that manage intra and extracellular processes of a cell. About 20-30% of genes of eukaryotic organisms are encoded from membrane proteins. In addition, almost 50% of drugs are directly targeted against membrane proteins. Owing to the significant role of membrane proteins in living organisms, the identification of membrane proteins with substantial accuracy is essential. However, the annotation of membrane proteins through conventional methods is difficult, sometimes even impossible. Therefore, membrane proteins are predicted from topogenic sequences using computational intelligence techniques. In this study, we conducted our research in two phases regarding the prediction of membrane protein types and structures. In Phase-I, regarding the prediction of membrane protein types, four different ways are explored in order to enhance true prediction. In the first part of phase-I, membrane protein types are predicted using Composite protein sequence representation followed by the application of principal component analysis in conjunction with individual classifiers. In the second part, the notion of ensemble classification is utilized. In part three, an error correction code is incorporated with Support Vector Machine using evolutionary profiles (Position Specific Scoring Matrix) and SAAC based features. Finally, in part four, a two-layer web predictor Mem- PHybrid is developed. Mem-PHybrid accomplishes the prediction in two steps. First, a protein query is identified as a membrane or a non-membrane protein. In case of membrane protein, then its type is predicted. In the second phase of this research, the structure of membrane protein is recognized as alpha-helix transmembrane or outer membrane proteins. In case of alpha- helix transmembrane proteins, features are explored from protein sequences by two feature extraction schemes of distinct natures; including physicochemical properties and compositional index of amino acids. Singular value decomposition is employed to extract high variation features. A hybrid feature vector is formed by combining the different types of features. Weighted Random Forest is then used as a classification algorithm. On the other hand, in case of outer membrane proteins, protein sequences are represented by Amino acid composition, PseAA composition, and SAAC along with their hybrid models. Genetic programming, K-nearest neighbor, and fuzzy K-nearest neighbor are adopted as classification algorithms. Through the simulation study, we observed that the prediction performance of our proposed approaches in case of both types and structures prediction is better compared to existing state of the arts/approaches. Finally, we conclude that our proposed approach for membrane proteins might play a significant role in Computational Biology, Molecular Biology, Bioinformatics, and thus might help in applications related to drug discovery. In addition, the related web predictors provide sufficient information to researchers and academicians in future research.