Search or add a thesis

Advanced Search (Beta)
Home > Prediction of Mirna Target Genes in Renal Cell Carcinoma by Using Machine Learning Algorithms

Prediction of Mirna Target Genes in Renal Cell Carcinoma by Using Machine Learning Algorithms

Thesis Info

Access Option

External Link

Author

Saddam Hussain

Institute

Virtual University of Pakistan

Institute Type

Public

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2019

Thesis Completion Status

Completed

Subject

Software Engineering

Language

English

Link

http://vspace.vu.edu.pk/detail.aspx?id=274

Added

2021-02-17 19:49:13

Modified

2024-03-24 20:25:49

ARI ID

1676721012284

Similar


Renal cell cancer (RCC) is most prevalent type of renal carcinoma found in adults.The association of miRNAs with cancers is confirmed by identifying crucial role in many physiological processes like development, proliferation and death of cells. miRNAs enable the early cancer diagnosis and prognosis by classifying the miRNAs required for cancer diagnosis. Early stage cancer identification is soothing to deal and miRNAs are potentially incredible markers. Researchers looked at expressed miRNAs in the RCC and Scrabbled to create miRNA profiles to submit early detection and successful intervention. The prediction of miRNAs target genes can better understand personalized medicine and the application of machine learning (ML) methods are used to cope with big problems. So, we used Microsoft Azure ML (Platform as a Service) services to design a predictive experiment model with classification algorithms (Naive Bayes and Support vector machine), predictive models are trained and tested by putative datasets downloaded from miRTar.human and consume as web services and office add-ins in MS Excel. These models retrieved predicted information from 11460 results about 620 different miRNAs targeting 164 transcripts with 1695 different position on 20 genes of 14 Chromosome. The results showed that hsa-miR-1273d transcript ABCC2 and MAPK1 (with BC099905 and NM_002745 transcripts respectively), hsa-miR-744* transcript BRAF and BCL2 (with M14745 and NM_000633 transcripts) and hsa-miR-143* transcript PIK3CA, ALOX5, HIF1A, MAPK and TP53.
Loading...
Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...