اور جہاز پھٹ گیا
پہلی اورآخری بار غلام اسحاق خان اچھا لگا اور جہاز پھٹ گیا کی وجہ سے میری رہائی جو 2009ء میں 25سال بعد ہو نی تھی ۔1988میں ہو گئی ۔
17August1988
ہم لوگ اڈیالہ جیل راولپنڈی میںتھے جیل کی گنتی بند ہو چکی تھی کہ اچانک جیل کے اندر عام قیدیوں کے نعروں کی آواز گو نجنے لگی ۔میں جیل کی ڈیوٹی پر موجود سپاہی سے پوچھا کہ کیا ہوا ہے ۔ اس نے کہا اڑتی اڑتی خبر آئی ہے کہ جنرل ضیاء الحق کا جہاز کریش ہو گیا ہے پاکستانی خبریں تو ہم کم ہی سنتے تھے اس دن ریڈیو لگایا تو جنرل ضیاء الحق کے مرنے کی خبر تھی ۔کانوںکو یقین نہیں آ رہا تھا ۔ مجھے اپنی ماںیاد آ گئی جب میری سزائے موت عمر قید میں تبدیل ہو ئی تو وہ مٹھائی لے کر آئیں میںنے کہا مجھے 25سال سزا ہو ئی ہے وہ بولیں کہ زندگی بچ گئی اب مجھے پتہ ہے کہ جب تک جنرل ضیاہے تم جیل میں ہو ۔ہزاروں مائوں کی سنی گئی ۔دسمبر 88میں محترمہ بے نظیر بھٹو شہید کی حکومت بننے کے بعد پاکستان بھر کی جیلوں میں موجود ہزاروں سیاسی قیدی رہا ہوئے وگرنہ میری رہائی مارچ 2009ء میں 25سال بعد ہو نی تھی ۔
This study examines religious discrimination against religious minorities like Muslims living in Christian populated areas in the south east, Christians are as well living in Muslim dominated areas. Minority Traditional worshippers in either Muslim or Christian majority areas, private institution, companies owned by Christians or Muslims etc. The discrimination against religious minorities has mitigated the peaceful co-existence among religious identities and other major life events which has culminated national development in all spheres of human engagement such as economic, social, political, security, etc. The researchers have tried to provide an analytical study of the empirical data as well as of the existing literature. The result of our findings shows that many religious identities have been denied of securing job opportunities, professing religion of their choice, finding it difficult to receive health care services, managing religious institutions, denied of equal rights of citizens, get political appointments, among others. The study recommends that people of different religions should embrace and tolerate one another, avoid the use of fanaticism, allow religious minorities to practice religion of their choice in order to dislodge prejudices from the society.
Machine simulation of human reading has been a subject of intensive research for almost four decades. The latest improvements in recognition methods and systems for Latin script are very promising and matured product are available for those languages in the market. On the contrary, despite more than one decade of research in the field of Urdu Optical Character Recognition (OCR), the reading skill of the computer is still way behind that of human. Automatic Urdu character recognition is a challenging task due to less attention of researchers and intrinsic complexity of Urdu text. That is highly cursive and calligraphic nature, diagonality in writing, and vertical overlap between characters in a sub-word. In this research, we present a novel implicit segmentation based technique for development of an OCR for printed Nasta''liq text lines. This work introduces a novel and robust approach based on statistical models that provide solution for recognition of Nasta’liq style Urdu text. Unlike to classical approaches which segment text into words, ligatures or characters, we employ an implicit segmentation where text lines are recognized during segmentation. The developed system is evaluated on standard Urdu text databases and compared with the state-of-the-art recognition techniques proposed till date. In the proposed recognition system, we use two strategies, first is based on manual features and second on automatic features. In the first strategy, we split each text line image into small frames of width ‘n’ by using a sliding window and extract many features from each frame. These features are then concatenated to form a feature vector for the text line. In the second strategy, we extract features automatically by using the Multi-dimensional (MD) Long Short Term Memory (LSTM) model in one scenario and by Convolutional Neural Network (CNN) model in other scenario. Features extracted from the text lines along with their respective transcriptions are fed to a Recurrent Neural Network (RNN) for training or classification. Recognition is obtained by using MDLSTM based recognizers with the Connectionist Temporal Classification (CTC) output layer. The experiments conducted on a standard UPTI database yield promising results. We obtained 96.40% (3.6% error rate) recognition rates using manual features, 98% (2.0% error rate) using raw pixels based features and 98.12% (1.88% error rate) using CNN based features.