طرؔ نظامی(۱۹۰۹ء ۔۱۹۶۹ء) کا اصل نام خدا بخش تھا اور مضطرؔ تخلص کرتے تھے۔ مضطر پسرور میں پیدا ہوئے۔ ۱۹۳۴ء میں انھوں نے ادیب فاضل کا امتحان پاس کیا۔ ۱۹۳۷ء میں مضطر نے محکمہ تعلیم میں بطورِ اُستاد ملازمت اختیار کی ۔ (۴۶۲)آپ نے کم عمری میں ہی لکھنا شروع کر دیا۔زمانہ طالب علمی ہی سے ان کا کلام کالج میگزین میں شائع ہونا شروع ہو گیا تھا۔ (۴۶۳) انھوں نے غزل،نظم ،نعت،منظوم مکتوبات،منظوم ترجمہ،مثنوی ،مسدس،قطعہ،رباعی ،مرثیہ ،ڈرامہ ،مضمون اور مقالہ غرضیکہ ادب کی تقریباً تمام اصناف میں طبع آزمائی کی۔ ان کی تصنیف و تالیف مطبوعہ اور غیر مطبوعہ کی تعداد اکیس کتب پر مشتمل ہیں۔ ان میں سے دو پیارے نبیؐ (منظوم) اور دانش کدہ فارسی مطبوعہ ہیں جب کہ باقی تمام غیر مطبوعہ ہیں۔ ان کی تفصیل درج کی جاتی ہے۔
مضطرؔ نے ’’پیارے نبی‘‘ کے عنوان سے آسان ،سادہ اور چھوٹی بحر میں دلکش انداز میں بچوں کے لیے نبی پاکؐ کے مقدس حالات کو منظوم اندازمیں پینتیالیس عنوانات کے تحت قلمبند کیا۔یہ مجموعہ پچھتر صفحات پر مشتمل ہے۔ جو ۱۹۶۴ء کا طبع شدہ ہے۔ ’’نقشِ حیات‘‘ نظم اور غزل پر مشتمل ہے۔ جو ۱۹۶۴ء کا طبع شدہ ہے۔ ’’نقشِ حیات‘‘ نظم اور غزل پر مشتمل مضطرؔ کا دوسرا غیر مطبوعہ مجموعہ کلام ہے۔یہ مسودہ خود نوشت ہے جو ۲۷۳ صفحات پر مشتمل ہے۔ متفرق کلام ( غیر مطبوعہ) مسودہ چھپن نظموں اور سترہ غزلیات پر مشتمل ہے۔ آبِ بقا (غیر مطبوعہ) مضطرؔ کا چوتھا نعتیہ مجموعہ کلام ہے۔ یہ مسودہ ایک سو انتالیس صفحات پر مشتمل ہے۔ جس میں ایک سو ستائیس اردو نعتیں ہیں۔کاروانِ حیات (غیر مطبوعہ) مضطرؔ کا پانچواں منظوم مکتوبات کا مجموعہ کلام ہے۔ یہ مسودہ ایک سو ترانوے صفحات پر مشتمل ہے۔ منظوم مکتوبات پچاس شخصیا ت کو لکھے گئے ہیں ۔ابوالاثر حفیظ جالندھری ،ڈاکٹر سید عبداﷲ اور مضطرؔ کے شاعری کے استاد عبداللطیف تپش بھی ان علمی و ادبی شخصیات میں شامل ہیں...
Peaceful coexistence is a major challenge in a multi-ethnic region like the Midwest. After the creation of the region in 1963, ethnic distrust dominated the region's body politics. The Biafran invasion of Midwest remained one invent that heightened ethnic distrust in the region. Although, scholars have examined the invasion, the need to re-examine it arises from the fact that the event made ethnic antagonism among the groups in the region more intense than ever before. It is against this backdrop that this paper examines the Biafran invasion of Midwest and its implications on inter-group relations in the region. Relying on primary and secondary sources, the paper is of the opinion that the intense group antagonism and suspicion emanated from the fact that the Biafran incursion into Midwest caused division among the groups in the region. The groups that were loyal to the Nigerian Government opposed the groups that supported Biafra. The paper further argues that the ethnic tension was also as a result of the assumption by the non-Igbo groups in the region that Biafrans were in the region to promote the interest of the Igbo groups.
Video Coding has evolved over the years and new compression standards are being developed at regular intervals. Latest video codecs such as High Efficiency Video Coding (HEVC) have improved compression efficiency to reduce the bit-rates of en coded streams. This improvement has resulted in high computational complexity that becomes a bottleneck in real-time implementation of these codecs. Reduction in this computational complexity without compromise on the video quality is a challenge. Another challenge in fast video encoding is the diverse nature of video content. Hence, there is need for development of intelligent techniques to reduce the computational complexity of latest video codecs that also adapt to the diverse nature of video data. Research in this thesis focuses on identification of local and global features ex tracted from video data that can be used to characterize the diverse content in video sequences. Texture variations and motion content in video sequence are quantified to categorize it into simple and complex video sequence. This informa tion is used to develop a content adaptive fast encoding framework to reduce the computational complexity of HEVC. Proposed framework performs equally well both for sequences with simple or complex video content without compromising on video quality. It has been tested with a large set of video sequences and shows promising results as compared to the other recent works. This research work also focuses on the use of machine learning based algorithms for fast encoding to significantly reduce the complexity of video codecs while keeping bit-rate and PSNR within limits in recent video standards like HEVC. Machine learning based techniques formulate encoding process as a classification problem and use features extracted from video data to model the classifiers that can assist in early predictions during encoding. A large set of spatial and temporal features is extracted from video data and a systematic approach is applied for optimal feature selection. Resultant optimal features are used to train a Random Forests based ensemble classifier for early selection of prediction modes and coding unit sizes in HEVC. Proposed technique has been evaluated with publicly available video data x sets. Experimental results show that the proposed approach significantly reduces the complexity of different profiles in HEVC without compromising on video qual ity and performs better than other existing fast video encoding implementations. Fast encoding methods developed in this research have also been validated using emerging applications of HEVC such as compression of light field images. Detailed analysis of different formats in light field image representation has been carried out to identify unique aspects that differentiate them from natural videos. These unique features are used in fast coding of light field images in various formats using HEVC. Experimental results show that proposed technique can be applied in fast coding of light field images without compromise on image quality. These results can be used as benchmark for future research on fast encoding of light field images. Hence, the fast video encoding methods developed in this research can be extended to other applications of image and video coding. These techniques can also be integrated in real life video encoding solutions to enable implementation of latest video codecs on embedded hardware platforms with limited processing power and memory.