Search or add a thesis

Advanced Search (Beta)
Home > التقليد والتلفيق

التقليد والتلفيق

Thesis Info

Author

علي شيخ ابراهيم حسين نور الصومالي

Supervisor

عطاء الله فيضي

Department

Department of Shariah & Law

Program

Mphil

Institute

International Islamic University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

2007

Thesis Completion Status

Completed

Page

224ص

Subject

Fiqh & Law

Language

Arabic

Other

Available at Dr Hamidullah Library,Islamic Research Institute, International Islamic University, Pakistan on T/558

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676721294286

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

احمد سعید اعوان

احمد سعید اعوان

لائلپور/فیصل آباد کی سب سے قد آور شخصیت جن کی خطابت ،عوام دوستی،ایمان داری ، سیاسی فہم و فراست ،قائدانہ تدبر انھیں ماضی ،حال اور مستقبل میں فیصل آباد کے سب سے معتبر و ممتاز سیاست دان کے مقام پر فائز رکھیں گے ۔انہوں سیاسی کارکن کی حیثیت سے پی پی پی کے قیام کے فوری بعد بھکر اور بعد ازاں لائلپور میں جس جدو جہد کا آغاز کیا تھا وہ وزارت اور ملک کی سب سے بڑی سیاسی جماعت کے اہم عہدوںکی ذمہ داری کے ملنے تک ایک تسلسل سے جاری رہی ۔ 1977میں شہید بھٹو کی گرفتاری کے بعد جنرل ضیاء الحق نے اکتوبر میں عام انتخابات کے انعقاد کا اعلان کیا تو انتخابی میم کی قیادت کا فریضہ بیگم نصرت بھٹو نے انجام دیا وہ شہر شہر جلسے کر رہی تھیں ۔ فیصل آباد کے جلسے کے لیے ملک احمد سعید اعوان کی تجویز پر شہید محترمہ بے نظیر بھٹو کو عملی سیاست کے آغاز کے لیے فیصل آباد مدعو کیا گیا ۔اس طرح شہید بی بی نے اپنے سیاسی کیرئیر کے سب سے پہلے   تاریخ ساز جلسہ سے خطاب کیا جس کا کریڈت اعوان صاحب کو جا تا ہے ۔ضیاء دور میں انہیں قید و بند کی صعوبتیں کے ساتھ کوڑوںکی سزا کا سامنا کرنا پڑا مگر ان کی استقامت اور پارٹی سے وفادار ی میں کمی نہ آئی ۔ایم آر ڈی کی احتجاجی تحریک کو فیصل آباد ڈویژن میں منظم کر نے کے لیے بھی انہی کا کلیدی کردار تھا ۔اس ضمن میں 1985ء میں ایم آر ڈی کا ایک بہت بڑا جلسہ کروانے میں ان کی شب و روز کی محنت شامل تھی ۔13اپریل 1986ء میں لاہور کے بعد سب سے بڑا جلسہ فیصل آ باد میں ہوا تھا شہید بے نظیر بھٹو نے اس...

The Politics of Energy Trade Between Iran and Pakistan

Pakistan and Iran are neighboring countries that have longstanding historical ties. However, there is little research available about Pakistan-Iran energy trade relations, especially with respect to the Iran-Pakistan gas pipeline. This research is based on primary data collected through qualitative interviews with key policymakers, academicians, and social activists, from Australia, India, Pakistan, and the United States. Based on the analysis of the data, this paper argues that there are risks involved for Pakistan in either honoring United States’ sanctions on Iran or bypassing them. In the former, Pakistan is incurring a huge cost in terms of delayed energy import from Iran while in the latter Pakistan, its officials, and its relevant organizations may face heavy sanctions by the United States. The study concludes that Pakistan must adopt a safer policy to pursue energy import from Iran while conducting good relations with both U.S. And Iran. The participation of India in the Iran-Pakistan energy project can increase the likelihood of its success.

Means of Cauchy’S Type

Deciding where to begin is a major step. One procedure is to lay out all necessary preliminary material, introduce the major ideas in their most general setting, prove the theorems and then specialize to obtain classical results and various applications. We experience convexity all the times and in many ways. The most prosaic example is our upright position, which is secured as long as the vertical projection of our center of gravity lies inside the convex envelope of our feet. Also convexity has a great impact on our every day life through numerous applications in industry, business, medicine and art. So do the problems of optimum allocation of resources and equilibrium of non cooperative games. The theory of convex functions is a part of the general subject of convexity, since a convex function is one whose epigraph is a convex set. Nonetheless it is an important theory, which touches almost all branches of mathematics. In calculus, the mean value theorem states, roughly, that given a section of a smooth curve, there is a point on that section at which the derivative (slope) of the curve is equal (parallel) to the ”average” derivative of the section. It is used to prove theorems that make global conclusions about a function on an interval starting from local hypotheses about derivatives at points of the interval. This theorem can be understood concretely by applying it to motion: if a car travels one hundred miles in one hour, so that its average speed during that time was 100 miles per hour, then at some time its instantaneous speed must have been exactly 100 miles per hour. An early version of this theorem was first described by Parameshvara (1370-1460) from the Kerala school of astronomy and mathematics in his commentaries on Govin- dasvami and Bhaskara II. The mean value theorem in its modern form was later stated viiviii by Augustin Louis Cauchy (1789-1857). It is one of the most important results in differential calculus, as well as one of the most important theorems in mathematical analysis, and is essential in proving the fundamental theorem of calculus. The mean value theorem can be used to prove Taylor’s theorem, of which it is a special case. We use this Mean value theorem and its other generalized version to define new Cauchy’s means. In the first chapter some basic notions and results from the theory of means and convex functions are being introduced along with classical results of convex functions. In the second chapter we define some further results about logarithmic convexity of differences of of power means for positive linear functionals as well as some related results. In the third chapter we define new means of Cauchy’s type. We prove that this mean is monotonic. Also we give some applications of this means. In the fourth chapter we give Cauchy’s means of Boas type for non positive measure. We show that these Cauchy’s means are monotonic. In the fifth chapter, we give definition of Cauchy means of Mercer’s type. Also, we show that these means are monotonic. In the sixth chapter, we define the generalization of results given by S. Simi ́c, for log- convexity for differences of mixed symmetric means. We also present related Cauchy’s means. In the last chapter we give an improvement and reversion of well known Ky-Fan inequality. Also we introduce in this chapter Levinson means of Cauchy’s type. We prove that these means are monotonic.