غلام رسول مہرؔ
غلام رسول مہر صاحب کی زندگی کا آغاز صحافت سے ہوا، وہ ایک زمانہ تک اخبار زمیندار کے عملہ ادارت میں رہے، پھر مولانا ظفر علی خاں سے اختلاف کی بنا پر عبدالمجید سالک سے مل کر انقلاب کے نام سے اپنا مستقل اخبار نکالا، جو اپنے دور کا مشہور اخبار تھا، اس میں اور زمیندار میں نوک جھونک چلتی رہتی تھی، انقلاب کے فکاہات جو سالک صاحب کے قلم سے ہوتے تھے، خاص چیز تھے، اس کو لوگ بڑے ذوق سے پڑھتے تھے، مہر صاحب تنہا صحانی ہی نہیں تھے، ان کا علمی و تحقیقی ذوق بھی بلند تھا، انھوں نے حضرت سید احمد شہید بریلوی اور غالب پر بڑی مبسوط اور محققانہ کتابیں لکھیں، ان کے علاوہ بھی بعض چھوٹی چھوٹی کتابیں ہیں، دارالمصنفین سے ان کو خاص تعلق تھا، ان سے کبھی کبھی خط و کتابت ہوتی تھی، ان کی موت سے ایک نامور اہل قلم اٹھ گیا، اﷲ تعالیٰ ان کی مغفرت فرمائے۔ (شاہ معین الدین ندوی، دسمبر ۱۹۷۱ء)
This article focus on the literary aspect of Qur’an. Stylistically it has a rich texture, which in itself is a miracle Qur’an is not only the last message of Allah- bearing finality but it is the root source of all forms of human knowledge. It has a pithy style therefore it offers multiple shades of meanings in it. This article focuses on that so as to open up new pathways into the stylistically rich texture of Holy Qur’an.
The exponential growth of biomedical literature makes it challenging for end users to find short and precise information quickly. Biomedical search engines, such as Pubmed and Quertle, are unable to retrieve the exact information so, a paradigm shift to question answering systems (QA) is required to find short and crisp answers to users’ questions. A biomedical question answering system usu ally comprises three components: question processing, candidate retrieval, and answer processing. In question processing, the QA system performs query for mulation and lexical answer type (LAT) prediction. Candidate retrieval stage uses a search engine and a document index to retrieve relevant documents and snippets. Finally, answer processing stage performs candidate answer generation and scoring. The biomedical terminology is ever evolving, so it is challenging for the candidate retrieval step to retrieve relevant documents requiring effective query formulation techniques. Secondly, the answers to biomedical questions are labeled with more than one semantic class in the biomedical domain requiring multi-label lexical answer type (LAT) prediction. The study at hand attempts to solve these two components in question processing stage by incorporating semantic information. We use discriminative term-selection query expansion technique with word embedding based semantic filtering during query formulation to improve the performance of biomedical document retrieval. Furthermore, we propose a LAT prediction pipeline for factoid and list type questions by introducing focus-driven semantic features which have significantly enhanced appropriate answer selection during the answer processing stage. We perform the evaluations of our proposed LAT prediction methodology using state-of-the-art Open Architecture for Ques tion Answering (OAQA) system and achieved better performance on 80% of the test batches compared with the performance of state-of-the-art QA systems. Fur thermore, we examine the proposed system performance in comparison with an online biomedical question answering system - EAGLi - and attain the best per formance for factoid and list type questions on Mean Reciprocal Rank (MRR) and F1 measure respectively.