دھب میںڈھابہ ہوٹل
شرم الشیخ سے پچاس میل کی مسافت پر دھب نامی قصبہ پر ہمار ی گاڑی چائے کے ایک ریستوران پر رکی ۔یہاں پاکستانی ٹرک ڈرائیور ہوٹل جیسا ماحول تھا ۔گاڑی میں موجود مصری خواتین نے اپنے بڑے بڑے پرس کھولے تو مجھے حیرت ہوئی کہ ان پرسوں میں توشۂ خوراک یعنی پنیر ،ڈبل روٹی ،بسکٹ ،سیب ،مالٹے ،کھجور اور پانی کی بوتل تک سارا انتظام مکمل تھا ۔مجھے اس انتظام و انصرام سے زیادہ خواتین کی فیاضی نے بہت متاثر کیا ۔ سب نے ایک دوسرے کے ساتھ اپنے توشے شریک کیے ،باوجود اس کے کہ سب کے پاس یہی چیزیں خود بھی موجود تھیں ۔سوڈان کے دکتوریحیٰ اور میرے پاس ان اشیا ء میں سے کوئی چیز نہ تھی ۔اس لیے سب نے ہمیں نوازنا شروع کر دیا اور آخر میں ہم دونوں کے پاس خوراک کا ذخیرہ ان سے بھی زیادہ ہو گیا ۔میں نے دکتورہ بسنت کو کہا کہ پاکستانی خواتین کے پرس اس سے بھی بڑے ہوتے ہیں مگر وہ پائوڈر ،کریم سے لیس ہوتے ہیں ۔ اس نے ہنس کر کہا وہ چیزیں ہمارے پاس بھی ہوتی ہیں مگر الگ پرس میں ۔ہوٹل میں مختلف قسم کے بسکٹ کے ساتھ نفیس پیکنگ میں ایک چیز بند تھی ،میں نے اس کے بارے میں دکتورہ شائمہ سے پوچھا کہ یہ کیا ہے ؟انھوں نے کہا ’’خشک روٹی ‘‘میں پوچھا یہ بھی یہاں فروخت ہوتی ہے ۔اس نے بڑے اعتماد سے کہا کہ ہاں بالکل اور لوگ یہاں اس کو بڑے شوق سے کھاتے ہیں۔ ہوٹل کے عقب میں بیری کے دو تین درخت تھے جن پر پھل پک چکے تھے ،میں نے توڑ کر کھائے تو محسوس ہوا کہ تپتے صحرا نے ان کو پکانے اوررات کی چاندنی نے ان کو میٹھا بنانے میں کوئی کسر نہیں...
The Mohkam and Mutashabeh is a renowned terminology of the Quranic Sciences and commentators of the Holy Quran described it in details, according to root words of Mohkam, it means Stopping and perfecting the things, this basic meaning can be seen in all the types and variations of this word. On the other hand we have the word Mutashabeh which root meaning is complication and unclearness. If we discuss both of the words as a terminology of the Quranic sciences, we can define Mohkam as “one which define itself without any other thing” or “one which has no need to be defined by something else” and Mutashabeh is “one which can’t define itself and need to be explained by someone else”. We will move on to discuss both terms in Holy Quran as a terminology to describe its multiple variations in the Holy Quran, its types and further we will discuss that why the Holy Quran contains both terms, in other words, we can say which are the logics and reasons of including Mutashabeh verses in the Holy Quran. In addition, we will mention the point of views of various renowned commentators and fields experts which give us a clear and sound concept about both of the terms.
G protein-coupled receptors (GPCRs) are located at the boundary of a cell, and are used for inter-cellular communications. They are mostly found in Eukaryotic cells; but can also be found in some Prokaryote cells. GPCRs modulate synaptic transmission in spinal cord and brain, and can trigger signaling pathways for the regulation of cell proliferation and gene expression. They are physiologically very important and according to an estimate, more than 50% of the marketed drugs target GPCRs. Computational prediction of unknown GPCRs has great importance in pharmacology because, malfunction of GPCRs can cause many diseases. The goal of this thesis is to propose new methods for the classification of GPCRs using Machine Learning approaches. The work in this thesis is divided into two parts. The first part is based on the classification of GPCRs using Machine Learning methods. We analyze biological, statistical, and transform-domain based feature extraction strategies and exploited various physiochemical properties to generate discriminate features of GPCR sequences. We have developed various GPCR classification methods. In the first method, GPCRs are predicted using the hybridization of pseudo amino acid composition and multi scale energy representation of physiochemical properties. In this method, our focus is on the introduction of various physiochemical properties (hydrophobicity, electronic and bulk property). In the second method, GPCRs are predicted using grey incidence degree measure and principal component analysis, whereby relation between various components of GPCR sequences is exploited. In the third method, we perform weighted ensemble classification of GPCRs using evolutionary information and multi-scale energy based features. The weights for each of the classifier are optimized using genetic algorithm, which provides an improvement in classification performance. Second part of the thesis is based on multiple sequence alignment of GPCRs, whereby, we utilize the structural information of GPCRs. The three-dimensional structures of several Rhodopsin like GPCRs have been resolved at atomic resolution and validates the prediction using sequence information alone that GPCRs fold has a bundle of seven transmembrane helices (TMs). The dataset is aligned initially using multiple sequence alignment methods and TMs are extracted. The dataset is composed of 19 sub families of Rhodopsin receptors, belonging to 62 species. Weights are assigned to avoid bias for a particular specie. Position specific scoring matrices (PSSM) are computed for the seven TMs data and pseudo counts are added. Pseudo 2counts are added using conventional Blosum62 scoring matrix. The unknown receptors are classified using PSSMs of the known receptors and by the TM similarity methods. Our research may have valuable contributions in the fields of Bioinformatics, Pattern Classification, and Computational Biology, and has yielded comparable results with the existing approaches. We conclude that our research may help the researchers in further exploring membrane protein classification or any other sub cellular localization classification.